CycLiq

Model Description
A brief description of the model is presented here, readers should refer to Wang
et al. (2014) for the full formulation of the original model.

The basic equations for the multiaxial model are:
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p=tr(c)/3 is the mean effective stress, with ¢ being the effective stress tensor;
s=o— pl is the deviatoric stress, | being the rank two identity tensor; &, = tr(g)
is the volumetric strain, & being the strain tensor; e=g—¢, /3l is the deviatoric

strain tensor. L is the plastic loading index and m the deviatoric strain flow direction.

The deviatoric stress ratio tensor is here defined as r = i, and q= *ES 'S, n= 9
p Y

The total stress-strain relation can be formulated by combining Egs. (1) and (2)

to be:
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with the elastic moduli G and K defined as suggested by Richart et al. (1970):
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The critical, maximum stress ratio and reversible dilatancy surfaces are shown

schematically in Fig. 1.
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Fig. 1. Schematic illustration of critical state, maximum stress ratio and
reversible dilatancy surfaces with mapping rules.

The function g(&) in this model is modified based on Zhang’s (1997) original

proposition:
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M, =M exp(—n"¥) is the peak mobilized stress ratio at triaxial compression and
¢. is the corresponding friction angle, M is the peak mobilized stress ratio under
torsional shear after isotropic consolidation. The state parameter ¥ proposed by
Been and Jefferies (1985) is introduced to consider the dependency of sand behaviour
on the current state.

Plastic loading is determined in three dimensional space by the load index L:
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Here n is a unit deviatoric tensor serving as the loading direction in deviatoric
stress space in the model, and the loading direction L is defined as
L= n—%(n :r)l . Plastic loading is induced when L >0, and load reversal occurs at
L<O0.

It is further assumed that the deviatoric strain flow direction m in Eq. (3) is the
same as the loading direction in deviatoric stress space so as:

m=n=r/ \/ﬁ (10)

Here T represents the projection of the current stress point on the maximum

stress ratio surface in deviatoric stress space (Fig. 1). The projection of current stress

ratio on the maximum stress ratio surface T is defined as the intersection between

the extension of the line from the previous load reversal point @,, to r and the
maximum stress ratio surface:

r=a;,+p(-a0,) (11)

When the loading index L is positive, plastic loading occurs. Once L becomes

negative, load reversal takes place and the projection centre @, is updated to be the

current stress ratio.

The plastic modulus H can then be defined as:

H = 2 hG exp(-n"W) (W(EJ —1} (12)
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where p is the distance between T and a,,and p the distance between r

in?

and a,,.



The mapping rule for reversible dilatancy is defined so that the projection of the
current stress ratio on the reversible dilatancy surface r, is the intersection between
T and the reversible dilatancy surface:
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According to the propositions made by Shamoto et al. (1997) and Zhang (1997),
the dilatancy of sand is decomposed into a reversible and an irreversible component,
through which the dilatancy during load reversal and cyclic loading can be properly
reflected. In this model, the dilatancy rate D is determined by combining the
reversible part D, and irreversible part D, : The generation and release of

reversible dilatancy can then be judged by the angle between r,—r and n:
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The generation rate of reversible dilatancy is:
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Reversible dilatancy remains non-positive and is released after load reversal, the
release rate is defined as:

Dre,rel = (dre,2)()2 / p (16)

d_, is another dilatancy parameter used to calculate the release of reversible
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release process, where d, is an irreversible dilatancy constant and &f . is the
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at previous load reversal.



Irreversible dilatancy rate Dir defined as:

Ve, <l—exp(n’¥)> ’
7/d,r <1—exp(nd‘P) > +7mono

=d; eXp(nd\P_055\111,ir)(< Mgy —77>exp(x) +(

17)

Here « is a parameter controlling the decrease rate of irreversible dilatancy,
Ymono 1S the shear strain since the last stress reversal and y, . is a reference shear
strain. ( ) are the MacCauley backets that yield (x)=x if x>0 and (x)=0 if

x<0. The exp(n"¥-as,,) partof the equation reflects asymptotic accumulation
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of irreversible dilatancy, and the part ( J reflects the

decreasing dilatancy rate during each monotonic loading process.

Model Parameters

The model parameters for Toyoura sand (calibrated by Zou et al., 2018) are listed

in Table 1. Note the parameter y, . is kept at a default value of 0.05.

Table 1. Model parameters for the simulations.

sad G, « h M d. d., d a ¥, n* n* A4 & ¢
Toyoura
sand 200 0.008 18 13 03 30 075 10 005 11 78 0.019 0934 07

Calibration Method
The calibration method for some parameters have been documented by previous

researchers, including the elastic modulus constants (Go, x ), plastic modulus



parameter (h) and critical state parameters (M, A_, e, &).

The state parameter constants n° and n9 can be determined through
n®=In(M/7n,)/¥, and n®=In(M,/M)/¥,, where n, and ¥ are n and
W at peak stress ratio in a monotonic drained triaxial test, and M, and ¥, are
those at reversible dilatancy sign change points.

Drained cyclic torsional or triaxial tests should be used for the determination of

d

n® here,as M, can only be acquired once irreversible dilatancy is negligible after a

number of loading cycles. The reversible dilatancy parameters d., can be

: . : . d : :
determined using the relationship between 7 and dé‘_vg from drained cyclic tests as
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suggested by Zhang and Wang (2012), and d_., should then be chosen to ensure the

re.2
release of reversible dilatancy.

For the irreversible dilatancy parameters ( d, and « especially), a
trial-and-error process should be adopted to simulate the stress strain behaviour of
undrained cyclic torsional/triaxial tests of different initial confining pressure or shear
stress amplitude, as was described by Zhang and Wang (2012). The parameter d.,

mainly determines how fast liquefaction is reached in undrained cyclic tests, and «

controls the decrease rate of irreversible dilatancy.

Example input file
This section presents the input file for FLAC3D v5.0 for the simulation of a
undrained cyclic torsional shear test. The FLAC3D simulation is carried out using a

single zone of unit dimensions (Im x 1m x 1m). The gridpoints are fixed and the



shear strain is applied as horizontal displacement at the upper gridpoints. A servo
function is used in order to perform cyclic testing under constant stress amplitude (tcyc
=25kPa). Initial stress field corresponds to vertical effective stress equal to 100kPa
and horizontal effective stress equal to 100kPa (i.e. lateral earth pressure coefficient at

rest equal to ko =1).

Table 2. Input file for undrained cyclic torsional shear test simulation.

Parameters & 0oros Dens Teye Sz0 K
" P (A0kgi)  (kPa)  (kPa) :
Values 0.773 0.435 1.497 25 100 1.0

new

title “Undrained cyclic shear test”
config fluid

config cppudm

model load modelPost sandliq005 64 v190122 .dll1
gen zone brick size 111 p0000pl 1.O0O0OP201.00p3 00 1.0 group cycliq pl

model CycliqCPSP
model fluid fl iso
set fluid off

prop dens 1.497 poros 0.435 einl=0. 773 ;Toyoura sand
prop G01=200. kappal=0.008 h1=1. 8 Mc1=1. 35 drel11=0. 35e0 dre21=30. e0 dir1=0. 75¢0 . ..
etal=10. rdr1=0.05 nbl=1.1 ndl1=7.8 lamdac1=0.019 e01=0.934 ksil=0.7 ...

: Toyoura sand model parameters

ini fmod 2.e6 fden 1. 000

; Initial Conditions
[xv. = 0.5e-5 ]

[sigma3 = -100.0 ]

[sxy max = 25.0 ]

[sxy min = —-25.0 ]

[sxy0 = (sxy max +sxy min )/2.0 ]



fix xy z

ini syy @sigmad
ini sxx @sigmad
ini szz @sigmad
ini sxy @sxy0_
ini sxz 0.

ini syz 0.

prop mElastFlagl=2 : 2-elastic (mElastFlagl — elastic and plastic flag)

solve

prop mElastFlagl=1 : l-plastic (mElastFlagl — elastic and plastic flag)

ini xdis 0 ydis 0 zdis 0 xvel 0 yvel 0 zvel 0 ;clear displacement and velocity

hist variables
define constants

global pzCL a = z near(0.5,0.5,0.5);
global pgplCL a = gp near( 0.0, 0.0, 1.0)
global pgp2CL_a = gp near( 0.0, 1.0, 1.0)
global pgp3CL a = gp near( 1.0, 0.0, 1.0)
global pgp4CL a = gp near( 1.0, 1.0, 1.0)

end

@constants

def p_ 1

local tmp = 1.0/3.0 *(z sxx(pzCL a) + z syy(pzCL a) + z szz(pzCL a))

global p 1 = (tmp + z pp(pzCL a))*(~1.0)

global q 1 = z sxy(pzCL a)

global settlement 1 = -1.0/ 4.0 * (gp zdisp(pgplCL a) + gp zdisp(pgp2CL a) +
gp_zdisp (pgp3CL_a) + gp_zdisp(pgpdCL_a))

global strain a 1 = settlement 1 / 1.0

global szz e 1 = ( z szz(pzCL a) + z pp(pzCL a))*(-1.0)

global sxx e 1 = (z sxx(pzCL a) + z pp(pzCL a)) *(-1.0)

global szz t 1 = z szz(pzCL _a) *(-1.0)

global sxx t 1 = z sxx(pzCL a) *(-1.0)

end

hist id 2 fish @p 1
hist id 3 fish @q 1
his id 201 zone sxx 0.5 0.5 0.5
his id 202 zone syy 0.5 0.5 0.5
his id 203 zone szz 0.5 0.5 0.5

his id 204 zone sxy 0.5 0.5 0.5



his id 205 zone sxz 0.5 0.5 0.5
his id 206 zone syz 0.5 0.5 0.5

his id 207 gp xd 0., 1., 0.
his id 208 gp xv 0. 1. 0.

hist nstep 2

: Cyclic Loading

range name x0 x -0.1 0.1
range name x1 x 0.9 1.1
range name y0 y -0.1 0.1
range name yl y 0.9 1.1
range name z0 z —0.1 0.1
range name z1 z 0.9 1.1
[xv_pos = xv_ ]
[xv_neg = —1.0%xv_ ]

ini xv @xv_pos_ range yl

def gamma contl (gam )

p_z=z near(0.5,0.5,0.5)

gp pnt_ = gp near ( 0.0e+00, 1.0e+00, 0.0e+00)
global gamma = abs(gp xdisp(gp pnt ))

global gamma max = gam

loop while gamma_ < gamma max
command
step 1

endcommand

if z sxy(p z)>sxy max_ then
command

ini xv @xv_neg range yl
endcommand

endif

if z sxy(p z)<sxy min_then
command

ini xv @xv pos range yl
endcommand

endif

gamma_ = abs (gp xdisp(gp pnt ))



endloop

global sgn z sxy = sgn( z sxy(p z))
global z xy 0 =z sxy(p z)

loop while z sxy(p z) * sgn z sxy > 0.0 ; back to zero shear stress state ..

: after cyclic loading
command
step 1

endcommand

if sgn z sxy >0.0 then
command

ini xv @xv_neg range yl
endcommand

endif

if sgn z sxy <0.0 then
command

ini xv @xv_pos_ range yl
endcommand

endif

endloop

end

@gamma_contl (0. 10)

P plot simulation results
plot create plot ’sxy p’

plot set job on

plot set viewtitle on

plot set viewtitle text ’plot sxy p’

plot add hist 3 linestyle style solid color red width 2 &

plot create plot ’sxy gamma’

plot set job on

plot set viewtitle on

plot set viewtitle text ’plot sxy gamma’

plot add hist 3 linestyle style solid color red width 2 &
vs 207

plot create plot 'p gamma’

plot set job on



plot set viewtitle on

plot set viewtitle text plot p gamma’

plot add hist -2 linestyle style solid color red width 2 &
vs 207

plot create plot ’xv’

plot set job on

plot set viewtitle on

plot set viewtitle text ' xv’

plot add hist 208 linestyle style solid color blue width 2

return



