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ABSTRACT 

 

The sand plasticity model PM4Sand for geotechnical earthquake engineering applications is 

presented. The model follows the basic framework of the stress ratio-controlled, critical state-based, 

bounding surface plasticity model for sand presented by Dafalias and Manzari (2004). Modifications 

to the model were developed and implemented by Boulanger (2010, Version 1), Boulanger and 

Ziotopoulou (2012, Version 2), Boulanger and Ziotopoulou (2015, Version 3; 2017, Version 3.1; 2022, 

Version 3.2) and further herein (Version 3.3) to improve its ability to approximate the stress-strain 

responses important to geotechnical earthquake engineering applications; in essence, the model was 

calibrated at the equation level to provide for better approximation of the trends observed across a set 

of experimentally- and case history-based design correlations. These constitutive modifications 

included: revising the fabric formation/destruction to depend on plastic shear rather than plastic 

volumetric strains; adding fabric history and cumulative fabric formation terms; modifying the plastic 

modulus relationship and making it dependent on fabric; modifying the dilatancy relationships to 

include dependence on fabric and fabric history, and to provide more distinct control of volumetric 

contraction versus expansion behavior; providing a constraint on the dilatancy during volumetric 

expansion so that it is consistent with Bolton’s (1986) dilatancy relationship; modifying the elastic 

modulus relationship to include dependence on stress ratio and fabric history; modifying the logic for 

tracking previous initial back-stress ratios (i.e., loading history effect); recasting the critical state 

framework to be in terms of a relative state parameter index; simplifying the formulation by restraining 

it to plane strain without Lode angle dependency for the bounding and dilatancy surfaces; incorporating 

a methodology for improved modeling of post-liquefaction reconsolidation strains; and providing 

default values for all but three primary input parameters. The model is coded as a user defined material 

in a dynamic link library (DLL) for use with the commercial program FLAC 8.1 (Itasca 2019) and 

FLAC2D 9.00 (Itasca 2023). The numerical implementation and DLL module are described. The 

behavior of the model is illustrated by simulations of element loading tests covering a broad range of 

conditions, including drained and undrained, cyclic, and monotonic loading under a range of initial 

confining and shear stress conditions, which can then be compared to typical design relationships. The 

model is shown to provide reasonable approximations of desired behaviors and to be relatively easy to 

calibrate. 
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PM4Sand (Version 3.3): 

A Sand Plasticity Model for Earthquake Engineering Applications 
 

1. INTRODUCTION 

 

Nonlinear deformation analyses for problems involving liquefaction are increasingly common in 

earthquake engineering practice. Constitutive models for sand that have been used in practice range 

from relatively simplified, uncoupled cycle-counting models to more complex plasticity models (e.g., 

Wang et al. 1990, Cubrinovski and Ishihara 1998, Dawson et al. 2001, Papadimitriou et al. 2001, Yang 

et al. 2003, Byrne et al. 2004, Dafalias and Manzari 2004, Tasiopoulou and Gerolymos 2016, 

Khosravifar et al. 2018, Liu et al. 2020, Yang et al. 2022). Each constitutive model has certain 

advantages and limitations that can be illustrated for potential users by documents showing the 

constitutive response of the model in element tests that cover a broad range of the conditions that may 

be important to various applications in practice (e.g., Beaty 2009). Considerations in selecting and 

calibrating constitutive models for nonlinear dynamic analyses and the documentation of results are 

discussed in Boulanger and Beaty (2016), Boulanger and Ziotopoulou (2018), and Boulanger 2022). 

The information available for the calibration of constitutive models in design practice most 

commonly includes basic classification index tests (e.g., grain size distributions), penetration 

resistances (e.g., SPT or CPT), and shear wave velocity (Vs) measurements. More detailed laboratory 

tests, such as triaxial or direct simple shear tests, are almost never available due to the problems with 

overcoming sampling disturbance effects and the challenge of identifying representative samples from 

highly heterogeneous deposits. 

Constitutive models for geotechnical earthquake engineering applications must be able to 

approximate a broad mix of conditions in the field. For example, a single geotechnical structure like 

the schematic earth dam shown in Figure 1.1 can have strata or zones of sand ranging from very loose 

to dense under a wide range of confining stresses, initial static shear stresses (e.g., at different points 

beneath the slope), drainage conditions (e.g., above and below the water table), and loading conditions 

(e.g., various levels of shaking). The engineering effort is greatly reduced if the constitutive model can 

reasonably approximate the predicted stress-strain behaviors under all these different conditions. If the 

model cannot approximate the trends across all these conditions, then extra engineering effort is 

required in deciding what behaviors should be prioritized in the calibration process, and sometimes by 

the need to repeat the calibrations for the effects of different initial stress conditions within the same 

geotechnical structure. 

The PM4Sand (Version 3.3) plasticity model for geotechnical earthquake engineering applications 

is presented herein. The PM4Sand model follows the basic framework of the stress ratio-controlled, 

critical state-based, bounding surface plasticity model for sand initially presented by Manzari and 

Dafalias (1997) and later extended by Dafalias and Manzari (2004). Modifications to the Dafalias-

Manzari model were developed and implemented to improve its ability to approximate engineering 

design relationships that are used to estimate the stress-strain behaviors that are important to predicting 

liquefaction-induced ground deformations during earthquakes. These developments are described in 

the manuals (Version 1 in Boulanger 2010, Version 2 in Boulanger and Ziotopoulou 2012, Version 3 

in Boulanger and Ziotopoulou 2015, Version 3.1 in Boulanger and Ziotopoulou 2017, Version 3.2 in 
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Boulanger and Ziotopoulo 2022, and Version 3.3 herein) and associated publications (Boulanger and 

Ziotopoulou 2013, Ziotopoulou and Boulanger 2013a, Ziotopoulou 2014, Ziotopoulou and Boulanger 

2016). The model is coded as a dynamic link library (DLL) for use with the commercial program FLAC 

8.1 (Itasca 2019) and FLAC2D 9.00 (Itasca 2023).  

It is unlikely that any one model can be developed or calibrated to simultaneously fit a full set of 

applicable design correlations for monotonic and cyclic, drained and undrained behaviors of sand, in 

part because the various design correlations are not necessarily physically consistent with each other; 

e.g., they may include a mix of laboratory test-based and case history-based relationships, or they have 

been empirically derived from laboratory data sets for different sands. Nonetheless, it is desirable that 

a model, after calibration to the design relationship that is of primary importance to a specific project, 

be able to produce behaviors that are reasonably consistent with the general magnitudes and trends in 

other applicable design correlations or typical experimental data. 

Stress-strain behaviors of sand that are most commonly the focus in design are listed below, along 

with reference to a figure showing an example design correlation or typical experimental test result. 

• The cyclic resistance ratio (CRR) against triggering of liquefaction, which is commonly estimated 

based on SPT and CPT penetration resistances with case history-based liquefaction correlations 

(e.g., Figure 1.2). The CRR is the cyclic stress ratio (e.g., CSR = cyc/'vc, with cyc = horizontal 

cyclic shear stress, 'vc = vertical consolidation stress) that is required to trigger liquefaction in a 

specified number of equivalent uniform loading cycles.  

• The response under the irregular cyclic loading histories produced by earthquakes, which is 

approximately represented by the relationship between CRR and number of equivalent uniform 

loading cycles (e.g., Figure 1.3). This aspect of behavior also directly relates to the magnitude 

scaling factors (MSF) that are used with liquefaction correlations in practice. 

• The dependence of CRR on effective confining stresses and sustained static shear stresses. These 

aspects of behavior are represented by the K (Figure 1.4) and K (Figure 1.5) correction factors, 

respectively, which are used with liquefaction correlations in practice.  

• The accumulation of shear strains after triggering of liquefaction. Evaluations of reasonable 

behavior are often based on comparisons to laboratory tests results for similar soils in the literature 

(e.g., Figure 1.6).  

• The strength loss as a consequence of liquefaction, which may involve explicitly modeling 

phenomena such as void redistribution or empirically accounting for it through case history-based 

residual strength correlations (e.g., Figure 1.7). 

• The small-strain shear modulus which can be obtained through in-situ shear wave velocity 

measurements. 

• The shear modulus reduction and equivalent damping ratio relationships prior to triggering of 

liquefaction. These aspects of behavior are commonly estimated using empirical correlations 

derived from laboratory test results for similar soils in the literature (e.g., Figure 1.8).  

• Drained monotonic shear strengths and stress-strain behavior (e.g., Figure 1.9). Peak friction angles 

may be estimated using relationships such as Bolton's (1986) relative dilatancy index, IR (Figure 

1.10) or correlations to SPT and CPT penetration resistances. 

• Undrained monotonic shear strengths and stress-strain behavior (e.g., Figure 1.11), which may be 
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estimated using correlations to SPT and CPT penetration resistances.  

• The volumetric strains during drained cyclic loading (Figure 1.12 and Figure 1.13) or due to 

reconsolidation following triggering of liquefaction (e.g., Figure 1.14), both of which may be 

estimated using empirical correlations derived from laboratory test results for similar soils in the 

literature. 

The constitutive model described herein was developed for earthquake engineering applications, 

with specific goals being: (1) the ability to reasonably approximate empirical correlations used in 

practice, and (2) an ability to be calibrated within a reasonable amount of engineering effort. In essence, 

the approach taken was to calibrate the constitutive model at the equation level, such that the functional 

forms for the various constitutive relationships were chosen for their ability to approximate the 

important trends embodied in the extensive laboratory-based and case history-based empirical 

correlations that are commonly used in practice. 

The organization of this report is structured as follows: 

• Section 2 of this report contains a description of the model formulation. 

• Section 3 contains a description of the model's implementation as a user defined material in a 

dynamic link library for use in the commercial program FLAC 8.1 (Itasca 2019) and FLAC2D 

9.00 (Itasca 2023).  

• Section 4 of this report contains a summary of the model input parameters, guidance on model 

parameter selections, and then illustrations of the model responses to a broad range of elemental 

loading conditions.  

• Section 5 contains summary remarks regarding the model and its use in practice. 

1.1  Revisions 

Revisions to PM4Sand in Version 3, relative to Version 2, included: (1) revised dependency of 

dilatancy and plastic modulus on fabric and fabric history, (2) modifications to the initial back-stress 

ratio tracking logic, (3) modifications for improved modeling of post-liquefaction reconsolidation 

strains after the end of strong shaking in a simulation, (4) addition of a minor cohesion term to reduce 

potential hour-glassing and improve behavior of zones near a free surface, (5) a more efficient tensor 

library which reduces computational time, and (6) re-calibration of the model, resulting in changes to 

the default values for some secondary parameters.  

Revisions to PM4Sand in Version 3.1, relative to Version 3, were minor. They included: (1) 

recompiling to run with FLAC 8.0 (Itasca 2016), (2) changes to the logic for input of secondary 

parameters, (3) a minor correction to the algorithm for post-liquefaction reconsolidation strains, and 

(4) renaming of some tracking variables. For boundary value problem simulations not involving post-

liquefaction reconsolidation, these revisions have been found to have no effect on simulation results.  

The report for Version 3.1 provided, relative to the one for Version 3, clarifications on some aspects of 

the model formulation and implementation in response to questions from users, corrected typographic 

errors, and described the above revisions to the input logic for secondary parameters. 

Revision 1 to Version 3.1 (posted January 2018) documented that the Version 3.1 DLL module was 

recompiled on November 28, 2017 with a modification to the initialization scheme that prevents a 

problem that can arise with the use of the static solver during model initialization (i.e., introduction of 
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PM4Sand into a model) with certain sequences of commands. Note that it is still recommended that 

PM4Sand only be used with the dynamic solver, especially for any conditions involving significant 

applied loading, as explained in Section 3.6. 

Revisions to PM4Sand Version 3.2 relative to Version 3.1, include a revision to the initial back-stress 

ratio initialization routine, a modification to the elastic shear modulus equation, a recalibration of the 

Fsedmin secondary parameter as well as a proper renaming of its input string for FLAC from F_sed to 

F_sedmin. The initial back-stress ratio at the time of model initialization is now limited to have a 

magnitude that is no greater than 90% of the bounding surface stress ratio (Mb); this constraint 

eliminates a problem that can occur when the model is initialized with consolidation stress states that 

are outside the bounding surface. The equation for the elastic shear modulus includes a CSR term that 

reduces the elastic shear modulus at stress ratios close to the bounding surface. The CSR term is 

normalized in Version 3.2 to produce a value of unity at the time of model initialization, which 

simplifies the calibration of the model. These changes do not significantly affect the general features 

of model responses but do affect responses for a given set of calibration parameters. Therefore, 

calibrations using PM4Sand Version 3.1 need to be revised when switching to Version 3.2. 

Furthermore, the manual was revised to reflect these changes as well as address minor typos and 

inconsistencies.  

Revision to PM4Sand to Version 3.3 relative to Version 3.2 was adding a restriction that CSR be less or 

equal to unity. In addition, the model was compiled for use with FLA2D 9.00. The DLL module for 

FLAC 8.1 modelpm4sand005_64.dll was compiled on June 12, 2023 using Microsoft Visual Studio 

Community 2015 C++. The DLL module for FLAC2D 9.00 cmodelPM4Sand2D009.dll was compiled 

on June 12, 2023 using Microsoft Visual Studio Community 2022 C++. Note that the compilation date 

and version are included in the properties of the DLL file. The simulations presented in this report were 

prepared using PM4Sand Version 3.3 in FLAC 8.1. PM4Sand Version 3.3 in FLAC2D 9.00 produced 

the same results.  
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Figure 1.1. Schematic cross-section for an earth dam. 

 

 

    

 
Figure 1.2. Correlations for cyclic resistance ratio (CRR) from SPT data  

(after Idriss and Boulanger 2010). 
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Figure 1.3. Relationships between cyclic resistance ratio (CRR) and number of equivalent uniform 

loading cycles for undrained loading of reconstituted and undisturbed samples of clean sand  

(from Ziotopoulou and Boulanger 2012). 
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Figure 1.4. K factor describing the effect that effective overburden stress has on cyclic resistance 

ratio of sands (from Idriss and Boulanger 2008). 

 

 

 

 
Figure 1.5. K factor describing the effect that sustained static shear stress ratio (=s/'vc) has on 

cyclic resistance ratio of sands (Boulanger 2003a). 
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Figure 1.6. Undrained cyclic triaxial test on clean sand (test from Boulanger and Truman 1996; from 

Idriss and Boulanger 2008). 
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Figure 1.7. Empirical relationship for estimating residual strength of liquefied sands based on case 

histories (Boulanger and Idriss 2011). 
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Figure 1.8. Shear modulus reduction and equivalent damping ratio relationship for sands, as 

recommended by EPRI (1993). 
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Figure 1.9. Drained triaxial compression tests on loose and dense sand specimens under a range of 

effective confining stresses (after Lee and Seed 1967; from Idriss and Boulanger 2008). 
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Figure 1.10. Triaxial test data for sands with initial relative densities in the vicinity of 80% or 50% 

failing at various mean effective stresses. The difference of peak friction angle from the critical 

friction angle is related to the relative dilatancy index (IR) (after Bolton 1986). 

 

 

 

 

10 100 1000 10000 100000

Mean Effective Stress p' ( kPa )

0

4

8

12

16


' m
a
x
 -

 
' c

ri
t 

(d
e

g
)

DR = 100 %75 %

50 %

25 %

'
max - '

crit = 3IR

IR = DR (Q - ln p')-R  

Q=10, R=1

D
R
 =

 8
0

 %
D

R
 =

 5
0

 %



 13  

 

 
 

 

Figure 1.11. Undrained triaxial compression tests on very loose and loose sand specimens under a 

range of effective consolidation stresses (after Ishihara 1993; from Idriss and Boulanger 2008). 
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Figure 1.12. Drained cyclic simple shear test showing densification of a sand specimen with 

successive cycles of loading (after Youd 1972; from Idriss and Boulanger 2008). 

 

 
 

Figure 1.13. Volumetric strains in drained cyclic direct simple shear tests on clean sands (Duku et al. 

2008): (a) Results from 16 sands at a relative density of about 60% with an overburden stress of 1.0 

atm, and (b) Comparison of trends with earlier relationships by Silver and Seed (1971) for sands at 

relative densities of 45, 60, and 80%. 
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Figure 1.14. Relationship between post-liquefaction volumetric strain and the maximum shear strain 

induced during undrained cyclic loading of clean sand (after Ishihara and Yoshimine 1992; redrawn 

in Idriss and Boulanger 2008). 
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2. MODEL FORMULATION 

 

The sand plasticity model presented herein follows the basic framework of the stress ratio-

controlled, critical state-based, bounding surface plasticity model for sand presented by Dafalias and 

Manzari (2004). The Dafalias and Manzari (2004) model extended the previous work by Manzari and 

Dafalias (1997) by adding a fabric-dilatancy related tensor quantity to account for the effect of fabric 

changes during loading. The fabric-dilatancy related tensor was used to macroscopically model the 

effect that microscopically-observed changes in sand fabric during plastic dilation have on the 

contractive response upon reversal of loading direction. Dafalias and Manzari (2004) provide a detailed 

description of the motivation for the model framework, beginning with a triaxial formulation that 

simplifies its presentation and followed by a multi-axial formulation. The model described herein is 

presented in its multi-axial formulation, along with the original framework of the Dafalias-Manzari 

model for comparison. 

 

2.1  Basic stress and strain terms 

 

The basic stress and strain terms for the model are as follows. The model is based on effective 

stresses, with the conventional prime symbol dropped from the stress terms for convenience because 

all stresses are effective for the model. The stresses are represented by the tensor , the principal 

effective stresses 1, 2, and 3, the mean effective stress p, the deviatoric stress tensor s, and the 

deviatoric stress ratio tensor r. The present implementation was further simplified by casting the 

various equations and relationships in terms of the in-plane stresses only. This limits the present 

implementation to plane-strain applications and is not correct for general cases, but it has the advantage 

of simplifying the implementation and improving computational speed by reducing the number of 

operations. Expanding the implementation to include the general case should not affect the general 

features of the model. Consequently, the relationships between the various stress terms can be 

summarized as follows: 
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(4)  

Note that the deviatoric stress and deviatoric stress ratio tensors are symmetric with rxx = -ryy and 

sxx = -syy (meaning a zero trace), and that I is the identity matrix. 

The model strains are represented by a tensor , which can be separated into the volumetric strain 

v and the deviatoric strain tensor e. The volumetric strain in plane strain is, 

 v xx yy  = +
 

(5)  

and the deviatoric strain tensor is, 

 

3

3

3

e ε
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(6)  

In incremental form, the deviatoric and volumetric strain terms are decomposed into an elastic and 

a plastic part, 

 e e   e
el pld d d= +

 
(7)  

 

 

  
el pl

v v vd d d  = +
 

(8)  

where 

e
eld  = elastic deviatoric strain increment tensor 

e
pld  = plastic deviatoric strain increment tensor 
el

vd  = elastic volumetric strain increment 
pl

vd  = plastic volumetric strain increment 

 

 

2.2  Critical state 

 

Dafalias and Manzari (2004), based on findings in Li and Wang (1998), used a power relationship 

to approximate the curving of the critical state line (Schofield and Wroth 1968) that occurs over a broad 

range of confining stresses,
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(9)  

where pcs = mean stress at critical state, ecs = critical state void ratio, and eo, , and m are parameters 

controlling the position and shape of the critical state line. The state of the sand was then described 

using the state parameter (Been and Jefferies 1985), which is the difference between the current void 

ratio (e) and the critical state void ratio (ecs) at the same mean effective stress (pcs). 

The model presented herein instead uses the relative state parameter index (R) as presented in 

Boulanger (2003a) and shown in Figure 2.1(a). The relative state parameter (Konrad 1988) is the state 

parameter normalized by the difference between the maximum void ratio (emax) and minimum void 

ratio (emin) values that are used to define relative density (DR). The relative state parameter "index" is 

just the relative state parameter defined using an empirical relationship for the critical state line. 

Boulanger (2003a) used Bolton's (1986) dilatancy relationship to define the empirical critical state line 

and thus arrived at, 

 ,R R cs RD D = −
 (10)  

 
,

ln 100

R cs

A

R
D

p
Q

p

=
 

−  
   

(11)  

where DR,cs = relative density at critical state for the current mean effective stress. The parameters Q 

and R were shown by Bolton (1986) to be about 10 and 1.0, respectively, for quartzitic sands. Critical 

state lines using the above expression with Q values of 9 and 10, and with R values of 1.0 and 1.5 are 

shown in Figure 2.1.(b). 

 

 

2.3  Bounding, dilatancy, and critical surfaces 

 

The model incorporates bounding, dilatancy, and critical stress ratio surfaces following the form of 

Dafalias and Manzari (2004). The present model simplifies the surfaces by removing the Lode angle 

dependency (e.g., friction angles are the same for compression or extension loading) that was included 

in the Dafalias and Manzari model, such that the bounding (Mb) and dilatancy (Md) ratios can be related 

to the critical stress ratio (M) by the following simpler expressions, 

 ( )expb b

RM M n =  −
 

(12)  

 ( )expd d

RM M n = 
 

(13)  
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where nb and nd are parameters determining the values of Mb and Md, respectively. For the present 

implementation, the mean normal stress p is taken as the average of the in-plane normal stresses 

(Equation 2), q is the difference in the major and minor principal in-plane stresses, and the relationship 

for M is therefore reduced to, 

 ( )2 sin cvM = 
 

(14)  

where cv is the constant volume or critical state effective friction angle. The three surfaces can, for the 

simplifying assumptions described above, be conveniently visualized as linear lines on a q-p plot 

(where q = 1 - 3) as shown in Figure 2.2 or as circular surfaces on a stress ratio graph of ryy versus rxy 

as shown in Figure 2.3. 

As the model is sheared toward critical state (R = 0), the values of Mb and Md will both approach 

the value of M. Thus, the bounding and dilatancy surfaces move together during shearing until they 

coincide with the critical state surface when the soil has reached critical state. 

The above functional form for the bounding stress ratio controls the relationship between peak 

friction angle and relative state, which is consistent with the forms and data previously proposed by 

Been and Jefferies (1985) and Konrad (1986). The data from those studies were primarily for sands 

that were dense-of-critical, and the above relationship can reasonably fit those data.  The few data 

points for loose-of-critical sands show that the peak friction angles (presumably determined at the limit 

of strains possible within the laboratory tests) were only slightly smaller than the critical state values, 

such that extending the above relationships to loose-of-critical sands may tend to underestimate the 

peak friction angles. Consequently, the present model allows nb and nd to be different for loose-of-

critical and dense-of-critical states for the same sand. 

 

 

2.4  Yield surface and image back-stress ratio tensors 

 

The yield surface and back-stress ratio tensor () follow those of the Dafalias and Manzari model, 

although their final form is considerably simplified by the prior assumption of removing any Lode 

angle dependency. The yield surface is a small cone in stress space, and is defined in stress terms by 

the following expression, 

 ( ) ( )
1

2 1: 0
2

s α s αf p p pm= − − − =  
 

(15)  

The back-stress ratio tensor  defines the center of the yield surface, and the parameter m defines the 

radius of the cone in terms of stress ratio. The yield function can be rewritten to emphasize the role of 

stress ratio terms as follows, 

 ( ) ( ) 1: 0
2

r α r αf m= − − − =
 

(16)  

The yield function can then be visualized as related to the distance between the stress ratio r and the 

back-stress ratio , as illustrated in Figure 2.3. 
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The bounding surface formulation now requires that bounding and dilatancy stress ratio tensors be 

defined. Dafalias and Manzari (2004) showed that it is more convenient to track back-stress ratios and 

to similarly define bounding and dilatancy surfaces in terms of back-stress ratios. An image back-stress 

ratio tensor for the bounding surface (b) is defined as,  

 1
2

α n
b bM m = −   

(17)  

where the tensor n is normal to the yield surface. An image back-stress ratio tensor for the dilatancy 

surface (d) is similarly defined as,  

 1
2

α n
d dM m = −   

(18)  

The computation of constitutive responses can now be more conveniently expressed in terms of back-

stress ratios rather than in terms of stress ratios, as noted by Dafalias and Manzari (2004). 

 

 

2.5  Stress reversal and initial back-stress ratio tensors 

 

The bounding surface formulation, as described in Dafalias (1986) and adopted by Dafalias and 

Manzari (2004), keeps track of the initial back-stress ratio (in) and uses it in the computation of the 

plastic modulus Kp. This tracking of one instance in loading history is essentially a first-order method 

for tracking loading history. A reversal in loading direction is then identified, following traditional 

bounding surface practice, whenever, 

 ( ) : 0α a nin− 
 

(19)  

A reversal causes the current stress ratio to become the initial stress ratio for subsequent loading. Small 

cycles of load reversal can reset the initial stress ratio and cause the plastic modulus Kp to increase 

accordingly, in which case the stress-strain response becomes overly stiff after a small load reversal. 

This is a well-known problem in bounding surface formulations for which various approaches offer 

different advantages and disadvantages. 

The model presented herein tracks an initial back-stress ratio and a previous initial back-stress ratio 

(in
p), as illustrated in Figure 2.4a. When a reversal occurs, the previous initial back-stress ratio is 

updated to the initial back-stress ratio, and the initial back-stress ratio is updated to the current back-

stress ratio. 

 

In addition, the model tracks an apparent initial back-stress ratio tensor (αin
app) as schematically 

illustrated in Figure 2.4b. The schematic in Figure 2.4b is similar to that of Figure 2.4a, except that the 

most recent loading reversals correspond to a small unload-reload cycle on an otherwise positive 

loading branch. The components of αin
app are taken as: (i) for positive loading directions, the minimum 

value they have ever had, but no smaller than zero, and (ii) for negative loading directions, the 

maximum value they have ever had, but no greater than zero. Figure 2.5 further illustrates these 

scenarios for four different loading cases. These minimum and maximum past back-stress ratios are 
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stored for each component individually and for the entire loading history. The use of αin
app helps avoid 

the over-stiffening of the stress-strain response following small unload-reload cycles along an 

otherwise monotonically increasing branch of loading, without having to track the loading history 

through many cycles of load reversals. 

 

The computation of Kp utilizes the values of αin
app, αin

true, and αin
p, as defined in Figure 2.4b and 

Figure 2.5, to better approximate the stress-strain response during an unload-reload cycle. For the last 

positive loading branch in this figure, the value of Kp is initially most strongly controlled (inversely) 

by the distance (α - αin
true):n, such that the stiffness is initially large. As positive loading continues, the 

progressive reduction in Kp becomes increasingly dependent on αin
app as well. Once the positive loading 

exceeds the previous reversal point, the value of Kp becomes solely dependent on the distance 

(α - αin
app):n. Thus, the computation of Kp has the following dependencies, 

 

 
( )

( )

( ) : 0 ,p true app

in p in in

app

p in

if  K f

else                      K f

   



−   =

 =

n

 (20)  

The equations relating Kp to these back-stress ratios are given later in Section 2.7.  

 

The impact of the above logic for defining αin on stress-strain responses is demonstrated in 

Figure 2.6 showing αxy versus shear strain  computed for two different drained DSS loading 

simulations. For these two examples, the reloading stiffness of the current loading branch (green line) 

is initially large because Kp is initially computed based on αin = αin
true. As the loading exceeds αin

p, the 

loading stiffness becomes much softer because Kp is now computed based on αin = αin
app. 

 

The initial back-stress ratio (αin) is first established at initialization of the model or upon execution of 

FirstCall (see also Section 3). The value of αin is established as being equal to the current back-stress ratio, 

subject to the limitation that its corresponding stress ratio be ≤ 0.9 Mb. This constraint on the magnitude 

of αin at initialization avoids a problem that can otherwise occur when the initial consolidation stress state 

is above the bounding surface. In such cases, Kp = 0 since Mcur > Mb and D = 0 since α - αin  = 0, which 

can result in no stress changes during shearing and hence an incorrect response. Linearly scaling αin so its 

corresponding stress ratio is ≤ 0.9 Mb upon initialization ensures that D > 0 at the start of shearing 

whenever the initial consolidation stress state corresponds to a stress ratio > 0.9 Mb. Undrained shearing 

from such an initial consolidation stress state will thus be properly accompanied by contraction and 

associated strain softening.  

 

 

2.6  Elastic strains and moduli 

 

The elastic deviatoric strain and elastic volumetric strain increments are computed as, 

 
2

s
e

el d
d

G
=

 
(21)  
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where G is the elastic shear modulus and K is the elastic bulk modulus. The elastic shear modulus in 

the model presented herein is dependent on the mean effective stress according to, 
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(23)  

where Go is a constant, pA is the atmospheric pressure (101.3 kPa), and CSR is a factor that accounts for 

stress ratio effects (described below). 

Dafalias and Manzari (2004) had included dependence of G on void ratio following the form of 

Richart et al. (1970). This aspect was not included in the model herein because: (1) the effects of void 

ratio changes on G are small relative to those of confining stress, (2) the value of G is more strongly 

affected by environmental factors such as cementation and ageing, and (3) the calibration of G to in-

situ shear wave velocity data is simplified by not including e.  

Yu and Richart (1984) showed that the small-strain elastic shear modulus of sand is dependent on 

the stress ratio and stress ratio history. The effect of stress ratio was shown to generally be less than 

about 10% when the ratio of major to minor principal effective stresses is less than about 2.5, but to 

also increase to about 20-30% at higher principal stress ratios. They also showed that stress ratio history 

caused a reduction in the small-strain elastic shear modulus when the maximum previous stress-ratio 

was greater than the current stress ratio. The effect of stress ratio and stress ratio history on the elastic 

shear modulus was approximately accounted for in the present model by the factor CSR. The following 

equation for CSR is similar in form to that used by Yu and Richart (1984) to represent stress ratio effects, 

except that it uses stress ratio terms consistent with the present model. The equation for CSR was further 

normalized in PM4Sand Version 3.2 to produce a value of unity at the time of model initialization, and 

restricted to values less than unity thereafter, as, 
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(24)  

The numerator in the above equation is the same form used in Version 3.1 of the model, while the 

denominator retains the value of the numerator from the time of model initialization. Thus, CSR = 1.0 

at the time of initialization. The above equation approximates Yu and Richart's (1984) results for stress 

ratio effects when CSR,0 = 0.3 and mSR = 2. The effects of stress ratio history would cause further 

reductions, and are more complicated to represent. The calibration examples presented later in this 

report worked well with CSR,0 = 0.5 and mSR = 4, which keeps the effect of stress ratio on elastic 
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modulus small at small stress ratios, but lets the effect increase to a 60% reduction when the stress ratio 

is on the bounding surface. 

The elastic bulk modulus is related to the shear modulus through the Poisson's ratio as, 
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v
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v

+
=

−  

(25)  

as was done by Dafalias and Manzari (2004). 

 

 

2.7  Plastic components without fabric effects 

 

Loading index 

 

The loading index (L) is used to compute the plastic component of the volumetric strain increment 

and the plastic deviatoric strain increment tensor as, 

 
pl

vd L D =
 

(26)  

 
'

e R
pld L=

 (27)  

where D is the dilatancy, R is the direction of dpl, R is the deviatoric component of R, and <> are 

Macaulay brackets that set negative values to zero [i.e., <L> = L if L ≥ 0, and <L> = 0 if L < 0]. The 

tensor R for the assumption of no Lode angle dependency is, 

 
1

3
R n ID= +

 
(28)  

where n is the unit normal to the yield surface (Figure 2.3). Note that the assumption of no Lode angle 

dependency also means that R = n. The dilatancy D relates the incremental plastic volumetric strain to 

the incremental plastic deviatoric strain, 
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d
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d
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=  (29)  

The dilatancy D can be also related to the conventional engineering shear strain in this plane strain 

approximation, as, 
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The loading index, as derived in Dafalias and Manzari (2004) is, 
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(31)  

The stress increment for an imposed strain increment can then be computed as, 

 ( )2 2e I n Ivd Gd Kd L G KD = + − +
 

(32)  

 

Hardening and the update of the back-stress ratio 

 

Updating of the back-stress ratio is dependent on the hardening aspects of the model. Dafalias and 

Manzari (2004) updated the back-stress ratio according to bounding surface practice as, 

 ( )
2

3
α α α

bd L h
 

= − 
   

(33)  

where h is the hardening coefficient. The factor of 2/3 was included for convenience so that model 

constants would be the same in triaxial and multi-axial derivations. They subsequently showed that the 

consistency condition f=0 was satisfied when the plastic modulus Kp was related to the hardening 

coefficient as, 

 ( )
2

:
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= −α α n
b

pK p h
 

(34)  

This expression can be rearranged so as to show that the consistency equation can be satisfied by 

expressing the hardening coefficient as, 
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The relationship for the plastic modulus can subsequently take a range of forms, provided that the 

hardening coefficient and updating of the back-stress ratio follow the above expressions.   

 

 

Plastic modulus 

 

The plastic modulus in the multi-axial generalized form of Dafalias and Manzari (2004), after 

substituting in their expression for the hardening coefficient, can be expressed as,
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(36)  

where ho and Ch are scalar parameters and e is the void ratio. Setting aside the secondary influence of 

void ratio, this form illustrates that Kp is proportional to G, proportional to the distance of the back-

stress ratio to the bounding back-stress ratio, and inversely proportional to the distance of the back-

stress ratio from the initial back-stress ratio. 

The plastic modulus relationship was revised in the model presented herein to provide an improved 

approximation of empirical relationships for secant shear modulus and equivalent damping ratios 

during drained strain-controlled cyclic loading. The plastic modulus is computed as, 
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(38)  

The factor Crev accounts for the effect of unload-reload cycles as discussed in Section 2.5 and 

illustrated in Figures 2.4 and 2.5. The constant C1 in the denominator serves to avoid division by zero 

and has a slight effect on the nonlinearity and damping at small shear strains. If C1 = 0, then the value 

of Kp will be infinite at the start of a loading cycle because ( - in):n will also be zero. In that case, 

nonlinearity will become noticeable only after ( - in):n becomes large enough to reduce Kp closer to 

the value of G (e.g., Kp/G closer to 100 or 200). Setting the value of C1 = ho/200 produces a reasonable 

response as will be demonstrated later with examples of modulus reduction and equivalent damping 

ratios. For stress ratios outside the bounding surface [i.e., loose-of-critical states with (b - ):n  <  0], 

the plastic modulus is set to zero rather than allowing for negative values. This restriction on the plastic 

modulus improved numerical stability while having little effect on computed stress-strain responses. 

The plastic modulus is further modified for the effects of fabric and fabric history, as described in a 

later section. 
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Plastic volumetric strains – Dilation  

 

Plastic volumetric strains are related to plastic deviatoric strains through the dilatancy D (Equations 

29 and 30), which is computed in the Dafalias and Manzari (2004) model and the base component of 

the model presented herein (with additional fabric effects described in a later section) as, 

 ( ) :α α n
d

doD A  =  −
   

(39)  

Note that dilation (increasing void ratio) occurs whenever the term (d - ):n is less than zero whereas 

contraction (decreasing void ratio) occurs when it is positive.  

The constant Ado in this relationship can be related to the dilatancy relationship proposed by Bolton 

(1986), which follows from the work of Rowe (1962), through the following sequence of steps. Bolton 

showed that the difference between peak and constant volume friction angles could be approximated 

as, 

 0.8pk cv  − = −  (40)  

with 
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Since  ≈ tan() for  less than about 0.35 radians (20 degrees), the difference between peak and 

constant volume friction angles (in radians) can be approximated as, 
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(42)  

The peak friction angle is mobilized at the bounding surface, so this can be written as, 
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The term n:n is equal to unity, and the values of pk and cv (again in radians) can be replaced with 

expressions in terms of Mb and M as,  
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This expression can then be rearranged to solve for Ado as, 
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(45)  

where the angles returned by the sin-1 functions are in radians.  

 

The parameter Ado should thus be chosen to be consistent with the nd and nb terms that control Mb, 

and Md. For example, setting the parameters nb and nd equal to 0.5 and 0.1, respectively, results in Ado 

varying from 1.26 for ξR = -0.1 to 1.45 for ξR = -0.7. A default value for Ado is computed based on the 

above expression using the conditions at the time of model initialization in FLAC (as described in a 

later section). If an alternative value for Ado is manually input as a property of the model, then the 

default value will be deactivated.

 
Alternatively, the stress ratio terms can be replaced with friction angles (in radians) as follows, 
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(46)  

 

The sine terms can be replaced with Taylor series, which are quite accurate with just the first two 

terms as, 
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(47)  

Substituting the Taylor series in the above equation gives, 
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The parameter Ado can then be solved for as, 
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(49)  

where the friction angles in the above expression are in radians. This expression provides an alternative 

view of how the parameter Ado relates to friction angles for a given set of nb and nd terms that control 

pk and d, respectively. For example, consider the case with the parameters nb and nd equal to 0.5 and 

0.1, respectively, and assuming cv = 33 degrees. For ξR = -0.1, we would obtain d = 32.6 degrees, pk 

=  degrees, and Ado = 1.26. For ξR = -0.7, we would obtain d = 30.5 degrees, pk = 50.6 degrees, 

and Ado = 1.45. 

 

Plastic volumetric strains – Contraction  

 

Plastic volumetric strains during contraction (i.e., whenever (d - ):n is greater than zero) are 

computed in the Dafalias and Manzari (2004) model using the same expression as used for dilatancy, 

 ( ) :α α n
d

doD A  =  −
   

(50)  

The use of this expression was found to limit the ability of the model to approximate a number of 

important loading responses; e.g., it greatly overestimated the slope of the cyclic resistance ratio (CRR) 

versus number of equivalent uniform loading cycles for undrained cyclic element tests (e.g., Figure 

1.3). 

Plastic volumetric strains during contraction for the model presented herein are computed using 

the following expression, 
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The various forms in the above relationships were developed to improve different aspects of the 

calibrated model's performance. The value of D was set proportional to the square of (( - in):n + Cin) 

to improve the slope of the relationship between CRR and number of uniform loading cycles. The Cin 

term depends on fabric and is described in a later section along with other modifications to the above 

expression for the effects of fabric and fabric history. The inclusion of the term Cin improves the stress 

paths for undrained cyclic loading and the volumetric strain response during drained cyclic loading. 

Inclusion of this constant enables some volumetric strain to develop early in the unloading from a point 

outside the dilatancy surface (as described later). The remaining terms on the right-hand side of the 

equation were chosen to be close to unity over most of the loading range, while ensuring that D 

smoothly goes to zero as  approaches d; reasonable results were obtained using a CD value of 0.10. 

The parameter Adc for contraction was related to the value of Ado for dilation by dividing it by a 

parameter hp that can be varied during the calibration process to obtain desired cyclic resistance ratios.  

The effect of confining stress on cyclic loading behavior was then conveniently incorporated by making 

hp depend on R, with the following form chosen so that the model produces results consistent with the 

design K relationships presented earlier in Figure 1.4., 

 ( )( )2
exp 0.7 7.0 0.5 0.5p po R Rh h for = − + −   

(53)  

 ( )exp 0.7 0.5p po Rh h for = −   
(54)  

Thus, the scalar constant hpo provides a linear scaling of contraction rates while the functional form 

of the remaining portion in Equations (53) and (54) is what controls the effect of overburden stress on 

CRR. The variation of hp with R for different values of hpo is plotted in Figure 2.7. Once the other 

input parameters have been selected, the constant hpo can be calibrated to arrive at a desired cyclic 

resistance ratio. 

An upper limit was imposed on the contraction rate, with the limiting value computed as, 
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This limit prevented numerical issues that were encountered with excessively large contraction 

rates. It does not appear to have limited the ability of the model to recreate realistic contraction rates as 

illustrated in the calibration examples shown later. 
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2.8  Fabric effects 

 

Dafalias and Manzari (2004) introduced a fabric-dilatancy tensor (z) that could be used to account 

for the effects of prior straining. Their fabric tensor (z) evolved in response to plastic volumetric dilation 

strains, according to, 

 
( )z n z

pl

z v maxd c d z= − − +
 

(56)  

where the parameter cz controls the rate of evolution and zmax is the maximum value that z can attain. 

The fabric-dilatancy tensor was modified for the present model as, 
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(57)  

In this expression, the tensor z evolves in response to plastic deviatoric strains that occur during dilation 

only (i.e., dividing the plastic volumetric strain by the dilatancy gives plastic shear strain). In addition, 

the evolution of fabric is restricted to only occur when (d – ):n < 0; this additional constraint 

precludes fabric evolution during dilation above the rotated dilatancy surface (introduced later) but 

below the non-rotated dilatancy surface. The parameter zcum is the cumulative value of absolute changes 

in z computed according to, 

 
zcumdz d=

 
(58)  

The rate of evolution for z therefore decreases with increasing values of zcum, which enables the 

undrained cyclic stress-strain response to progressively accumulate shear strains rather than lock-up 

into a repeating stress-strain loop. In addition, the greatest past peak value (scalar amplitude) for z 

during its loading history is also tracked, 
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(59)  

The values of z, zpeak, and zcum are later used to facilitate the accumulation of shear strains under 

symmetric loading through their effects on the plastic modulus and dilatancy relationships. 

The evolution of the fabric tensor terms is illustrated in Figure 2.8 and Figure 2.9 showing the 

response of a loose sand to undrained cyclic DSS loading without any sustained horizontal shear stress 

(Figure 2.8) and with a sustained horizontal shear stress (Figure 2.9). These figures show the stress path 

and stress-strain response of the sand, along with time histories for the back-stress ratios and fabric 

tensor terms. Note how the fabric terms do not grow until the soil reaches the dilatancy surface, and 
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how the stress-ratios are limited by the bounding stress ratio. There is no horizontal shear stress reversal 

for the case shown in Figure 2.9 and thus the back-stress ratio and fabric terms do not reverse either. 

 

Additional memory of fabric formation history 

 

Memory of the fabric formation history was included in the model presented herein to improve the 

ability of the model to account for the effects of sustained static shear stresses and account for 

differences in fabric effects for various drained versus undrained loading conditions. 

The initial fabric tensor (zin) at the start of the current loading path is determined whenever a stress 

ratio reversal occurs. The zin tracks the immediate history terms without any consideration of whether 

an earlier loading cycle had produced greater degrees of fabric (i.e., the logic is different from that 

adopted for the updating of back-stress ratio history terms). This history term is used for describing the 

degree of stress rotation and its effects on plastic modulus, as described later.
 

Another aspect of the fabric history that is tracked is the mean stress at which the fabric is formed. 

This aspect of fabric history is tracked by tracking the product of z and p, and defining pzp as the mean 

stress at the time that this product achieves its greatest peak value. The pzp is used in addressing a couple 

of issues, including the issue of how fabric that is formed during liquefaction may be erased during 

reconsolidation. For example, a saturated sand that develops cyclic mobility behavior during undrained 

cyclic loading clearly remembers its history of plastic deviatoric strains and then subsequently forgets 

(to a large extent) this prior strain history when it reconsolidates back to its pre-earthquake confining 

stress. As another example, the memory of prior strains during undrained cyclic loading is very different 

than the memory of prior strains during drained cyclic loading. This memory conceptually could be 

related to the history of plastic and total volumetric strains, but a simpler method to account for this 

effect is to consider how the mean stress p relates to the value of pzp. Conceptually, it appears that prior 

strain history (or fabric) is most strongly remembered when the soil is operating under mean stresses 

that are smaller than those that existed when the fabric was formed (i.e., p << pzp) and then largely 

forgotten when they are of the same order (i.e., p  pzp). This attribute will be used in the relationships 

described later for describing the effects of fabric on dilatancy. 

Effect of fabric on plastic modulus 

 

An effect of fabric on the plastic modulus was added to the model presented herein by reducing 

the plastic modulus as the fabric tensor increased in peak amplitude, as follows: 
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where, 
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The above expressions produce a reduction in plastic modulus when fabric is favorable (z:n ≥ 0) and 

with increasing plastic shear strains (which conceptually would break down any cementation). This 

reduces both the plastic modulus and the hysteretic damping at larger shear strains (note that zpeak = 0 

unless the soil has been loaded strongly enough to pass outside the dilatancy surface), improves the 

volumetric strains that develop in drained cyclic loading, and improves the path in undrained cyclic 

loading.  

The CKα and square root of (1-Czpk2) terms both serve to increase Kp during non-reversal loading 

by amounts that depend on the fabric and stress history. During reversal loading, the (1-Czpk2) term 

approaches unity
 
and Kp evolves as it previously had. The roles of each of the other terms are discussed 

below.
  

Czpk1 and Czpk2 are terms that start from zero and grow to be unity for uni-directional growth of 

fabric which is the case during non-reversing loading conditions. These two terms differ by the rate 

under which they approach unity by the use of the constant zmax /5 or zmax/100 with these respective 

values chosen for their ability to better approximate the engineering behaviors of interest and 

correlations. For full reversal loading where the fabric alternates between positive and negative values, 

these terms will both go to zero. 

Cpzp2 starts initially at zero and stays equal to zero until fabric is formed. After fabric is formed, this 

term quickly transitions to unity for values of mean effective stress p that are less than the value that p 

had when the maximum fabric was formed (pzp). If p increases beyond the value of pzp the term will 

return to zero according to the Macaulay brackets. 

The values for the calibration parameters CKp and CKαf were chosen for their ability to reasonably 

approximate the targeted behaviors, as discussed later. Setting CKp to a default value of 2.0 was found 

to produce reasonable responses with particular emphasis on improving (reducing) the equivalent 

damping ratios at shear strains of 1 to 3% in drained cyclic loading. The parameter CKαf is particularly 

useful for adjusting the undrained cyclic loading response with sustained static shear stresses; a default 

calibration which depends on DR is presented later. 
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The cumulative effect of the above parameters can be understood as follows. If a soil is strongly 

loaded in uni-directional loading and forms significant amount of fabric and is then unloaded, then 

upon subsequent reloading the terms Cpzp2 and Czpk1 will be unity and CKα will become large. If the 

loads are increased to where the soil is being sheared and forming fabric at even higher stresses (higher 

values of p than fabric was previously formed at) then CKα will be unity (Cpzp2 = 0). In this way, an 

element that has developed strong fabric under monotonic or cyclic loading without reversal of the total 

shear stress direction (e.g., an element within a steep slope where the static shear stresses are greater 

than the cyclic shear stresses) will, when unloaded and reloaded, be initially much stiffer (increased 

Kp) followed by a softening (smaller Kp) if the soil is loaded into virgin territory. 

 

 

Effect of fabric on plastic volumetric dilation 

 

A rotated dilatancy surface with slope MdR which evolves with the history of the fabric tensor z was 

added to the framework of the model to facilitate earlier dilation at low stress ratios under certain 

loading paths (Ziotopoulou 2014, Ziotopoulou and Boulanger 2016). The rotated surface, schematically 

illustrated in Figure 2.10 as a line in q-p space and Figure 2.11 as a circular surface on a stress-ratio 

graph of ryy versus rxy, is equal to the original dilatancy surface scaled-down by a factor Crot1, 
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where Md is the slope of the unrotated dilatancy surface. Experimental results (Ziotopoulou 2014, 

Ziotopoulou and Boulanger 2016) indicate that the loading history, the loading direction and the 

loading pattern play important roles in the response of the soil to irregular cyclic loading. Thus the 

scaling factor that defines the rotated dilatancy surface was made dependent on whether fabric is 

favorable (z : n > 0) or unfavorable (z : n < 0) and on the factor Czin1 which is an indirect measure of 

whether there are reversals or not, 

 1
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z n z nin
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max
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   
(67)  

where zin is the fabric tensor at the beginning of the current loading branch. Czin1 can take values ranging 

from 0, when there are no reversals, to 1, when there are reversals. The rotated dilatancy surface is 

operating only for loading with an unfavorable fabric since the factor Crot1 becomes 1 when the fabric 

is favorable (i.e., −z : n = 0). 

A back-stress ratio tensor for the rotated dilatancy surface (αdR) was introduced as, 

 ( )
1

2
 = − n

dR dRM m
 

(68)  
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Dilation occurs whenever the term (αdR − α) : n is negative whereas contraction occurs when it is 

positive. The calculation of D is still treated separately during dilation and contraction. 

D during dilation is now computed according to the following expressions. First, a value for D is 

computed from the rotated dilatancy surface, 
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(69)  

where the CDR factor is applied to reduce the rate under which dilatancy is increasing and is discussed 

further below. Second, another value for D is computed that would be obtained from the non-rotated 

dilatancy surface, 

 ( )( ) :d

non rot dD A− =  − − −α α n
 

(70)  

The Macaulay brackets in the above expression ensure that Dnon-rot is equal to zero whenever (αd − α) : n 

> 0 while (αdR − α) : n < 0. Lastly, the operating value of D is selected from the above two values based 

on, 
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(71)  

The above logic is illustrated in Figure 2.12 where D is plotted for a half-cycle of loading that goes 

from contraction to dilation. This figure shows that Dnon-rot is used whenever it is smaller (more 

negative) than Drot. For cases where Drot is smaller than Dnon-rot, the value of D is interpolated based on 

the additional term on the right that multiplies the difference between Drot and Dnon-rot. This interpolation 

term is close to unity for stress ratios away from the bounding surface (Mcur < Mb), such that D will be 

equal to Drot as illustrated in the figure. However, this term will also go smoothly to zero as the stress 

ratio gets close to the bounding surface, so that dilatancy smoothly goes to zero as a soil approaches 

the critical state where M = Md = Mb. The constant of 0.01 in the denominator controls the rate under 

which D goes to zero as the stress ratio nears the bounding surface and was found to provide reasonable 

results in trial simulations. 

The factor CDR in the denominator of the expression for Drot is applied so that the D computed based 

on the rotated dilatancy surface is consistent with experimental observations. Its value, for the default 

calibration described later, has been made dependent on the initial DR of the soil. 

Lastly, the parameter Ad in the expressions for both Drot and Dnon-rot is expressed as, 
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Consider the six terms added to the denominator of the expression for Ad. The first term [zcum
2/zmax] 

facilitates the progressive growth of strains under symmetric loading by reducing the dilatancy that 

occurs when a liquefied soil has been sheared through many cycles of loading; note that this term 

progressively increases with subsequent cycles of loading. The second term facilitates strain-hardening 

when the plastic shear strain reaches the prior peak value, wherein the term approaches zero (i.e., when 

z:n approaches zpeak√2) and the dilation rate consequently rapidly approaches the virgin loading value 

of Ado. The third term C is a calibration constant that can be used to modify the rate of plastic shear 

strain accumulation. The fourth term Cpzp causes the effects of fabric on dilation to be diminished 

(erased) whenever the current value of p is near the value of pzp; this term enables the model to provide 

reasonable predictions of responses to large numbers of either drained or undrained loading cycles. The 

fifth term Cpmin provides a minimum amount of shear resistance for a soil after it has temporarily 

reached an excess pore pressure ratio of 100%; This term is almost zero when p'=0, such that the soil 

will initially dilate until some minimum p' has developed, after which the term quickly approaches 1.0.  

The parameter pmin2 is currently set to become equal to 5% of the value of p' at consolidation (which is 

the value that exists when the flag FirstCall –see Section 3– was last set equal to 0), with the minimum 

value of pmin2 being 10 times the minimum value of p' (i.e., pmin = 1/200 times the larger of pA or the 

value of p' at consolidation). The sixth term Czin1 facilitates strain-hardening when stress reversals are 

not causing fabric changes; i.e., when the initial and current fabric terms are close to equal, the term 

Czin1 goes to zero. Lastly, the second term in the numerator, Czin2, causes the dilatancy to be decreased 

by up to a factor of 3 under conditions of large strains and full stress (and fabric) reversals, which 

improves the prediction of cyclic strain accumulation during undrained cyclic loading. 

An additional constraint is placed on D during dilation at very low effective stresses. For p < 2pmin, 

the value of D cannot be smaller in magnitude than computed by the following expression, 
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This expression ensures that the model will, for dense-of-critical soils (i.e., Mb > Md), be dilative when 

p falls below 2pmin.  

 

Effect of fabric on plastic volumetric contraction 

 

Dafalias and Manzari (2004) used the fabric tensor to modify the dilatancy during contraction 

(D > 0) as follows, 
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This relationship enhances the volumetric contraction whenever the fabric is favorable (z:n ≥ 0), based 

on the term 1+<z:n> as recommended by Dafalias and Manzari (2004). 

The effect of fabric on dilatancy during contraction was modified for the present model as, 
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The factor Cin in the expression for D has been modified so it now depends on fabric; Cin is zero 

for unfavorable fabric, and increases with increasing z:n for favorable fabric to enhance the contraction 

rate at the start of an unloading cycle (note that D would be zero at the start of an unloading cycle if Cin 

was zero). 

The term Cdz in the denominator of the expression for Adc serves to increase the rate of contraction 

as zpeak nears zmax or as a large amount of cumulative fabric formation/destruction has taken place.  This 

term was developed for improved modeling of the cyclic strength of denser sands, for which the value 

of hp can be on the order of 100 (Figure 2.7). The degrading of the denominator as zpeak or zcum increases 

enables the generation of high excess pore pressures at higher loading levels, and controls the slope of 

the CRR versus number of uniform loading cycles relationship obtained for undrained element loading. 

Note that the denominator degrades whether fabric is favorable or not, but that the overall rate of 

contraction is more enhanced if the fabric is favorable (z:n ≥ 0). The factor Crot2 was introduced into 

the factor Cdz to provide better control over the rate of contraction as zpeak nears zmax or as a large amount 

of cumulative fabric formation/destruction has taken place. The factor Crot2 takes values that range from 

1 for loading with zero fabric or cyclic loading that causes reversals of fabric (since zcum will become 

much larger than zpeak), to 0 for loading that causes fabric to grow monotonically in one direction such 

as in non-reversal cyclic loading (since zcum will equal zpeak ). Lastly, the limit on the minimum value 

of Cdz is required for avoiding division by zero and to avoid over-estimating contraction rates (i.e., 

small values of hp and large values of zpeak or zcum). 

The term Cpmin2 slows the rate of contraction when p is approaching its minimum allowable value, 

and stops further contraction when p is less than twice the minimum allowable p.  

 

Effect of fabric on the elastic modulus 

 

The elastic shear modulus and elastic bulk modulus may degrade with increasing values of 

cumulative plastic deviator strain term, zcum. This component of the model was added to account for 

the progressive destruction, with increasing plastic shear strains, of any minor cementation bonds or 

other ageing- or strain history-related phenomena that produced an increase in small-strain shear 

modulus. The destruction of minor cementation by plastic shear strains is evidenced in the field by 

measurements of shear wave velocities in sand that are lower after earthquake shaking than before 

earthquake shaking (e.g., Arai 2006). The degradation of the elastic shear modulus is computed as, 
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(86)  

where CGD is the factor by which the shear modulus is degraded (divided) at very large values of zcum. 

This change in the elastic shear modulus G causes the bulk modulus K to progressively decrease with 

increasing zcum. The change in K improves the model's ability to track the stress-strain response of 

liquefying sand. In particular, decreasing K with increasing zcum reduces the rate of strain-hardening 

after phase transformation at larger shear strain levels, and improves the ability to approximate the 

hysteretic stress-strain response of a soil as it liquefies. 
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Effect of fabric on peak mobilized friction angles in drained and undrained loading 

 
Kutter and Chen (1997) showed that plastic dilation rates are different in drained and undrained 

loading of the same clean sand, with the consequence being that the peak mobilized friction angles are 

also different for drained and undrained loading. This aspect of behavior would appear to be 

contradictory to having a bounding surface that is only dependent on the relative state of the sand (i.e., 

through the parameter nb) if the mobilized friction angles for drained and undrained loading paths are 

both controlled by the bounding surface. The model presented herein produces the same peak mobilized 

friction angles for drained and undrained loading because both conditions become limited by the same 

bounding surface. This aspect of behavior deserves closer examination in future efforts.  

 

2.9  Post-shaking reconsolidation 

 

Volumetric strains that develop during post-liquefaction reconsolidation of sand are difficult to 

numerically model using the conventional constitutive separation of strains into elastic and plastic 

components since a large portion of the post-liquefaction reconsolidation strains are due to 

sedimentation effects which are not easily incorporated into either the elastic or plastic components of 

behavior. Single element simulations using various constitutive models show that they generally predict 

post-liquefaction reconsolidation strains that are an order of magnitude smaller than observed in various 

experimental studies (e.g., Ziotopoulou and Boulanger 2013b, Howell et al. 2014).  

 

The present model was modified to provide more realistic estimates of reconsolidation strains 

during the post-shaking portion of a numerical simulation. The modification involved the pragmatic 

approach of reducing the post-shaking elastic shear modulus G (and hence elastic bulk modulus K) 

which increases reconsolidation strains, thereby compensating for the sedimentation strains which are 

not explicitly modeled. The user may activate this feature after the end of strong shaking, such that 

post-liquefaction reconsolidation strains are better approximated in the remainder of the simulation. 

This feature should not be activated for the strong shaking portion of a simulation. 

 

The post-shaking elastic moduli are determined by multiplying the conventional elastic moduli 

(computed using the expressions described earlier) by a reduction factor Fsed as, 
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 post shaking sedK F K− =  (88)  

 

The Fsed value is computed as, 
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0.25

1
o

cur

cum
sed sed d

cum max

z M
p p

z z M

 
 = − 

+ 
 (90)  

   

 0.04sed,minF =  (91)  

 
5o

atm
sed

P
p = −  (92)  

 

where the constant value Fsed,min represents the smallest value that Fsed can attain, and the parameter 

p'sed,o is the mean effective stress up to which reconsolidation strains are enhanced. The value of Fsed 

progressively reduces from unity toward the value of Fsed,min as zcum progressively increases and 

provided that Mcur is less than Md. Setting Fsed,min to 0.04 was found to produce reasonable responses 

as shown later. The user can select other values for p'sed,o  and Fsed,min. 

2.10  Summary of constitutive equations 

 

The constitutive equations for the model presented herein are summarized in Table 2.1 along with 

the equations for the Dafalias and Manzari (2004) model.  



 40  

 

Table 2.1.  Comparison of constitutive equations 

Dafalias-Manzari (2004) model Present model 
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Plastic deviatoric strain increment 
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If contracting (D≥ 0) 
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Fabric-dilatancy tensor update 
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Figure 2.1.  Definition of the relative state parameter index, R (Boulanger 2003a) and the effects of 

varying Q and R. 
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Figure 2.2. Schematic of yield, critical, dilatancy, and bounding lines in q-p space  

(after Dafalias & Manzari 2004). Relative location of dilatancy and bounding lines corresponds to 

dense-of-critical states of stress. 
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Figure 2.3. Schematic of the bounding, dilatancy, and yield surfaces on the ryy-rxy stress-ratio plane 

with the yield surface, normal tensor, dilatancy back-stress ratio, and bounding back-stress ratio. 

Relative locations of the surfaces differ from those of Figure 2.2. 
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Figure 2.4. Schematic showing definitions of back-stress ratio tensors on the yy-xy plane for: (a) a loading history with reversals in 

the sign of the shear stress ratios, and (b) a loading history with a recent loading reversal that does not involve reversal of the sign of 

the shear stress ratios. 
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Figure 2.5. Example scenarios of back-stress ratio tracking: (a) positive loading direction with 

minimum value of back-stress ratio (𝜶𝑚𝑖𝑛) being less than zero such that 𝜶𝑖𝑛
𝑎𝑝𝑝 = 𝜶𝑖𝑛

𝑡𝑟𝑢𝑒 , (b) 

positive loading direction with minimum value of back-stress ratio (𝜶𝑚𝑖𝑛) being greater than zero 

such that 𝜶𝑖𝑛
𝑎𝑝𝑝 = 𝜶𝑚𝑖𝑛, (c) negative loading direction with maximum value of back-stress ratio 

(𝜶𝑚𝑎𝑥) being greater than zero such that 𝜶𝑖𝑛
𝑎𝑝𝑝 = 𝜶𝑖𝑛

𝑡𝑟𝑢𝑒, (d) negative loading direction with 

minimum value of back-stress ratio (𝜶𝑚𝑎𝑥) being less than zero such that 𝜶𝑖𝑛
𝑎𝑝𝑝 = 𝜶𝑚𝑎𝑥. 
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Figure 2.6. Drained DSS simulations showing αxy versus γ with the points corresponding to the 

current back-stress ratio α, the apparent initial back-stress ratio αin
app, the true initial back-stress 

ratio αin
true, and the previous initial back-stress ratio αin

p for: (a) monotonic shearing with one 

intermediate unload-reload cycle, and (b) a more general sequence of cyclic loading. 
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Figure 2.7. Variation of contraction rate function hp with relative state parameter index R and the 

contraction rate parameter hpo. 
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Figure 2.8. Undrained cyclic DSS loading response for DR = 35% with an initial static shear stress 

ratio of α=0.0, showing the variation in stresses, stress ratios, and fabric tensor terms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 54  

 

 

 
 

Figure 2.9. Undrained cyclic DSS loading response for DR = 35% with an initial static shear stress 

ratio of α=0.20, showing the variation in stresses, stress ratios, and fabric tensor terms. 

  



 55  

 

 

 

Figure 2.10. Schematic of the rotated dilatancy line added to PM4Sand Version 3, along with the yield, 

critical, dilatancy, and bounding lines in q-p space. Relative location of dilatancy and bounding lines 

corresponds to dense-of-critical states of stress. 
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Figure 2.11. Schematic of the rotated dilatancy line, along with the bounding, dilatancy, and yield 

surfaces on the ryy-rxy stress-ratio plane with the yield surface, normal tensor, dilatancy back-stress 

ratio, and bounding back-stress ratio. Relative locations of the surfaces differ from those of 

Figure 2.10. 
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Figure 2.12. Schematic of the dilatancy D calculation based on the stress state with regards to the 

rotated dilatancy (MdR), dilatancy (Md) and bounding (Mb) surfaces during a half-cycle of loading that 

goes from contraction to dilation. 
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3. MODEL IMPLEMENTATION 

 

The model has been implemented as a user defined material (udm) for use with the commercial 

finite difference program, FLAC 8.1 (Itasca 2019). This section includes a brief description of the 

mixed discretization scheme used in FLAC, the numerical implementation scheme used for PM4Sand, 

some additional comments on alternative implementation schemes, and information regarding the 

dynamic link library (DLL) for PM4Sand. 

 

 

3.1 Aspects of FLAC's numerical approach 

 

Explicit integration 

 

FLAC is an explicit finite difference program which uses time steps equal to or smaller than the 

minimum time required for waves to travel between any pair of nodes. This approach ensures that 

physical information does not propagate faster than numerical information. FLAC computes a default 

time step based on the properties of the model (e.g., element size, material stiffness, permeability, 

damping). Users may specify a time step that is smaller than the default value.  

Obtaining numerically convergent solutions to nonlinear problems using FLAC requires that:  

1) integration of the constitutive models be convergent, and  

2) the explicit global solution is convergent. 

The default time step computed by FLAC does not necessarily ensure a numerically convergent 

solution, especially for FLAC models that are subjected to very high loading rates. Convergence of the 

constitutive model's integration depends more strongly on the strain increment size, which is dependent 

on both the loading rate and time step size. Convergence of the explicit global solution depends more 

strongly on the sizes of the stress increments generated in the materials, which again are only indirectly 

controlled by the default time step size. For this reason, the user needs to evaluate the sensitivity of the 

solution to the time step size and not automatically assume that the default time step size ensures a 

convergent solution. 

 

Mixed discretization scheme 

 

FLAC uses a mixed discretization technique in which each quadrilateral zone (analogous to an 

element) is subdivided internally by its diagonals into two overlaid sets of constant-strain triangles. The 

term “mixed” stems from the fact that different discretizations are used for the isotropic and deviatoric 

parts of the strain and stress tensor (Marti and Cundall 1982). Isotropic stress and strain components 

are taken to be constant over the whole quadrilateral zone, while the deviatoric components are treated 

separately for each triangular sub-zone. Essentially, the shear strains are computed and maintained for 

each individual triangle, while the volumetric strains are computed for each quadrilateral as a weighted 

average of the volumetric strains within the juxtaposed pairs of triangles. Hour-glass modes are resisted 

by shear stresses generated in the triangles and the scheme accurately predicts plastic collapse loads 

because constant volume deformations are possible within the quadrilaterals. Note that discretization 

using triangles or four-node quadrilaterals alone would result in meshes that are over-constrained (too 

stiff) and which would tend to over-predict plastic collapse loads. Since each quadrilateral can be 
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divided by two possible diagonals, a symmetric response of this discretization can only be obtained by 

running two complete meshes in parallel, each representing one half of the overall stiffness. At the end, 

the procedure reduces the number of constraints on plastic flow and, at the same time, reduces unwanted 

hour-glassing by ensuring that hourglass modes produce non-zero stresses. 

The implementation of a complex constitutive model in FLAC requires special attention to the way 

stresses and strains are handled under FLAC's mixed discretization scheme. During each time step, 

FLAC calls the constitutive model once per triangular subzone (four times per zone). The isotropic 

components of the stress outputs from the four subzones are then averaged internally by FLAC 

according to the Mixed Discretization scheme. A consequence of this averaging of stresses is that the 

final stress state for any subzone is unlikely to satisfy the consistency condition of elasto-plastic models, 

meaning that the newly calculated stress states will not necessarily lie on the yield surface. 

Andrianopoulos (2006) addressed this problem by adopting a vanished elastic region in their elasto-

plastic model. 

 

 

3.2. Implementation of PM4Sand in FLAC 

 

The implementation scheme for PM4Sand and how it relates to the challenges posed by FLAC's 

mixed discretization scheme (Section 3.1) are described here. Recall that each zone (consisting of four 

subzones) will start off at the beginning of each time step with a stress state and will be loaded by a 

strain increment whose volumetric components are the same in all four subzones while their deviatoric 

components are different (due to the mixed discretization scheme). The constitutive model will be 

called once per subzone (four times per zone) to obtain stresses from strains according to the following 

equation where Cijkl denotes the constitutive law: 

 
( ) ( ) ( ) ( ) ( )

σ σ σ ε
i 1 i dt i dt

ij ij ij ij ijkl ijd C d+ = + = +   (93)  

At the end of the step, each subzone will have its own stress state, which will be handled by FLAC 

independent of the constitutive model, and its own internal parameters, which FLAC will be unaware 

of. The subzones can therefore all have different stress states at the beginning of the next loading 

increment, and as such would need to maintain their own sets of internal parameters. 

The current implementation scheme for PM4Sand is illustrated in Figure 3.1 and described by the 

pseudo-code listed in Table 3.1. At the end of each time step, the stress and internal variables are 

averaged over the four subzones. A drift correction is applied to ensure that the averaged stresses and 

internal variables satisfy the consistency condition; the correction involves projecting the back-stress 

ratio in the direction of the zone-averaged stress ratio. Another correction is applied if the zone-

averaged stress ratio lies outside the bounding surface; the correction involves projecting the zone 

averaged stress ratio back along a normal to the bounding surface. The zone-averaged stresses are then 

used to compute a new dilatancy D and plastic modulus Kp that are consistent with the average response 

of the zone over this step. These values for D and Kp are then used by all four subzones in the next time 

step (i.e., the values of D and Kp lag one step behind the time step for which they were determined); 

note that this approach is used by other elasto-plastic models available in FLAC. Consequently, the 

four subzones will use a common D and Kp during each time step. Most other internal parameters are 

also computed and retained at the zone level, as described by the pseudo-code in Table 3.1.  
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Two other implementation schemes for PM4Sand were explored for comparison purposes and 

found to have problems. The first of these alternative implementations was that used in Version 1 of 

PM4Sand. In this implementation, each subzone had its own D and Kp and developed its own internal 

variables (e.g., fabric, back-stress ratios, history terms) for each loading increment or step. At the end 

of the step, the stress and internal variables were averaged at the zone level and the drift and bounding 

surface corrections were applied. The four subzones therefore started each loading step with a common 

set of stresses and internal variables, but each could have greatly differing values for D and Kp 

depending on the loading direction imposed on each subzone. In highly nonlinear loading steps, it was 

possible for one or two of the overlapping subzones to be strongly contractive (e.g., perhaps because 

of a reversal in loading direction) while the other subzones were strongly dilative, such that the 

incremental changes in stresses between the four subzones had competing effects on the zone's average 

behavior. This implementation was found to sometimes lead to unusual deformation modes in zones 

that were connected to piles by FLAC's interface springs. The unusual deformation modes are believed 

to be due to strong differences in loading directions and conditions between the subzones of zones 

being loaded by interface springs. This problem was effectively eliminated by the current 

implementation described in Table 3.1. The second of these alternative implementations increased the 

independence of the subzones, just to explore how it would affect behavior. In this implementation, 

each subzone (triangle) retained its own memory and history of stresses and internal parameters. This 

approach led to nonsensical results between the overlapping triangular subzones, especially when the 

loading conditions were highly nonlinear. For example, the external stresses sometimes could be 

carried by only two of the overlapping triangles (each having twice the correct stresses) while the 

stresses in the other two overlapping triangles went to zero. The experiences with these two alternative 

implementation schemes illustrate how FLAC's mixed discretization scheme requires special 

considerations when implementing highly nonlinear constitutive models. 

 

The current implementation also includes a scheme to reduce hour-glassing modes which developed 

in liquefied zones in some cases because the four subzones no longer have independent states of stress. 

The four subzones have, in parallel to the PM4Sand constitutive model, an elastic-plastic resistance to 

shear stresses which acts independently in each of the subzones. The properties of this parallel elastic-

plastic model are set at the instance when PM4Sand is initialized; the elastic moduli of the parallel 

elastic-plastic model are set equal to 0.01 times those for PM4Sand, and its plastic shear strength (chg) 

is set as the product of a strength ratio (crhg) times the mean effective stress in the zone. If the user 

specifies values for both chg and crhg, then chg is taken as the greater of the specified chg value and the 

value computed using the specified crhg. The default value for crhg is 0.005. The parallel elastic-plastic 

model only responds to deviatoric strains (producing shear stresses) and not to volumetric strains 

(producing no mean stress). This nominal amount of independent shearing resistance in the subzones 

was found to adequately control hour-glassing modes for the range of problems examined to date. 

 

Implementation of PM4Sand uses explicit integration and thus the user should routinely check that 

the solutions are not sensitive to time step size. The addition of substepping could improve the 

constitutive model's integration but would not eliminate the need to evaluate the effect of time step size 

on the global solution. In the developers’ experiences, the default time steps of FLAC in dynamic 

analyses of liquefaction problems have been small enough to ensure that numerical solutions are not 

significantly affected by time step size, and thus the additional computational cost of including 

substepping at the constitutive level was not considered necessary. Examples of the effects of time step 

size are presented in Section 3.3. 
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Numerical stability of the implemented model has been evaluated for a wide range of simulations 

of both element responses and system responses using the default range of parameters which are also 

summarized in the next section. Numerical stability problems may, however, develop when using input 

parameters which fall outside the ranges explored during model development, calibration, and 

implementation. Some initial bounds have therefore been placed on certain parameters whenever 

parametric analyses identified the potential for such problems; e.g., the minimum value of mean stress 

is limited to 0.5 kPa or 0.005 times the initial consolidation stress; the relative density was limited to 

values less than 1.2. The user must be aware that other limits may be identified as additional analyses 

explore a broader range of the possible input parameters. 

 

 

3.3 Effect of time step size on element responses 

 

Numerical convergence of the current implementation of PM4Sand was evaluated by running 

numerous problems using a range of dynamic time steps (dydt), beginning with the default (maximum) 

time step computed by FLAC and then trying smaller and smaller values. These comparisons have 

shown that the solutions are not sensitive to the time step size for the range of problems and loading 

rates examined. The user must always check the sensitivity of boundary value problems to the time step 

size, however, as the accuracy of the explicit integration is strongly dependent on the size of the strain 

increments which are only partly controlled by the time step size. 

For example, the effect of time step size (or strain increment size) on integration of the PM4Sand 

model is shown in Figure 3.3a for a single element simulation of a cyclic drained DSS test for sand at 

DR = 55% at σ'vo = 100kPa. The element was subjected to two cycles of strain-controlled loading with 

a single-amplitude shear strain of 1%. The strain rate was constant, with each cycle having a total 

duration of 1 sec (i.e., average loading frequency was 1 Hz). The default time step was 1.038e-4 s and 

the strain rate was 4 %/s which gives a step size of Δγ = 4.15e-6 %/step. To evaluate different Δγ’s, the 

time step was reduced by factors of ½, ¼, and 1/8. The simulated stress-strain responses showed 

minimal differences, indicating that the integration was sufficiently accurate for practical purposes.  

A second example of the effect of time step size is shown in Figure 3.3b for a stress-controlled 

cyclic undrained DSS test for sand at DR = 55% at σ'vo = 100kPa. The default time step was 3.604e-5 s 

and the strain rate was again 4 %/s which gives a step size of Δγ = 1.44e-6 %/step. The default time 

step is smaller for the undrained element test because of the higher wave speed in the pore water. To 

evaluate different Δγ, the time step was again reduced by factors of ½, ¼, and 1/8. The simulated stress-

strain responses again showed minimal differences, indicating that the integration was sufficiently 

accurate for practical purposes. 

Figure 3.3a and b presents the same examples as Figure 3.2a and b but for a very high strain rate of 

12%/s. The corresponding step sizes for the drained (a) and undrained (b) cases are 12.45e-6%/step and 

4.32e-6 %/step, respectively. To evaluate different Δγ’s, the time step was again reduced by factors of 

1/2, 1/4 and 1/8. The simulated stress-strain responses for the drained case showed minimal differences, 

whereas the undrained case showed some slight differences. The differences for the undrained case are 

attributed to the very high strain rate of 12%/sec, which was only used to examine the limits of 

behaviors. 
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Note that comparisons of solutions at different step sizes Δγ generally cannot be made by just 

varying the strain rate or cyclic loading frequency. FLAC is always solving the dynamic equation of 

equilibrium so changing the strain rate by changing any loading rate parameter also changes the 

dynamic excitation for the system, which can cause a change in the dynamic response of the element. 

In that case, any changes in the stress-strain response caused by changes in loading rate parameters 

may be a realistic simulation result that reflects the change in the dynamic excitation of the element.  

 

3.4 Effect of time step size on system responses 

 

The effect of time step size on the solution of full boundary value problems can similarly be 

examined by repeating simulations with successively smaller dynamic time step sizes. As an example, 

the effect of time step size on the seismic response of an embankment dam with PM4Sand used for the 

shells [(N1)60cs = 25] and foundation alluvium [(N1)60cs = 15] is illustrated in Figure 3.4. Time histories 

of crest settlement and horizontal displacements at points on the upstream and downstream faces are 

shown for the default time step size and for time step sizes that are ½ and ¼ the default size. The 

differences in the displacements at these three points are small enough to be virtually indistinguishable 

in the figure. The effect of time step size has been observed to be more significant in some other 

boundary value problem simulations (e.g., 5% differences), but they are generally small enough for 

practical applications.  

The sensitivity of simulation results to the dynamic time step size should always be evaluated as part 

of the sensitivity studies. As previously discussed in Section 3.1, the effects of changing time step size 

may result from a combination of the effects on the constitutive model integration and the explicit 

global solution. Implementation of substepping in the constitutive model may reduce its effect, but will 

not remove the need to check the global solution's sensitivity to the step size. Since the sensitivity to 

step size should always be checked, the additional computational costs of including substepping at the 

constitutive level was not considered warranted at this time. 

 

 

3.5 DLL module 

 

The PM4Sand model was coded in C++ and compiled as a User Defined Model (UDM) dynamic 

link library (DLL) in Microsoft Visual Studio 2015 for FLAC 8.1 and in Microsoft Visual Studio 2022 

for FLAC2D 9.00. The steps required for using a DLL are described in the respective FLAC/FLAC2D 

manuals.  

Automatic loading of the DLL file in FLAC8.1 

(1) Load the DLL file in the /Exe64/plugins/models subdirectory of the folder where FLAC has 

been installed. 

 (2) Open the FLAC 8.1 executable file or the FLAC graphical user interface. If the DLL is properly 

located, then the model should be automatically loaded. In order to verify that it has been loaded, 

the user can type “print model” in the console. If the model has been loaded then it should 

appear as “pm4sand” under the list of “Currently loaded CPP models”. 
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 (3) Before constitutive model plug-ins can be assigned to zones, the model must be configured for 

their use by giving the config cppudm command. Otherwise, the user will get a “model will 

not cycle” error message. 

 

Automatic loading of the DLL file in FLAC2D 9.00 

(1) Load the DLL file in the /Exe64/plugins/cmodels subdirectory of the folder where FLAC2D has 

been installed. 

(2) Open the FLAC2D 9.00 executable file or the FLAC2D graphical user interface. If the DLL is 

properly located, then the model should be automatically loaded and the console will indicate 

“flac2d>program load cmodel "plugins/cmodel/cmodelPM4Sand2D009.dll --

- cmodel plugin pm4sand2d loaded.”. In order to also verify that it has been loaded, 

the user can type “zone cmodel list” in the console. If the model has been loaded then it 

should appear as “pm4sand2d” under the list of “Currently loaded CPP models”. 

 (3) Before constitutive model plug-ins can be assigned to zones, the model must be configured for 

their use by giving the model configure plugins command. Otherwise, the user will 

get a “model will not cycle” error message. 
 

In order to assign the model to the preferred zones the following command should be given in FLAC8.1: 

 
model pm4sand <...> 
 

or in FLAC2D 9.00: 

 
zone cmodel assign pm4sand2d range <...> 

 

3.6  Additional notes on use in boundary value problem simulations 

 

FLAC includes both "static" and "dynamic" solution procedures. PM4Sand has been extensively 

validated for use with the dynamic procedure. The use of PM4Sand with FLAC's static solution 

procedure requires special attention to the loading and solution procedures. The static solution 

procedure uses extremely high damping values which can carry significant shear and normal stresses, 

which can cause problems with the response of a highly nonlinear, stress-dependent material. For 

example, if the user imposes a large strain rate (e.g., high rate of loading on a foundation) in a problem 

involving drained loading of a contractive soil with the static solution procedure, the drained volumetric 

contraction of the soil can result in normal stresses being transferred to the damping component which 

causes an artificial reduction in normal effective stress in the soil. For this reason, the use of PM4Sand 

with FLAC's static solution procedure requires a higher degree of scrutiny and evaluation to ensure that 

such problems do not develop.  

 

A nominal amount of Rayleigh damping should be included with PM4Sand zones to control 

numerical noise during dynamic solutions. A damping ratio of 0.005 has been found sufficient for most 

applications.  
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Zones at the ground surface, particularly within slopes and above the water table, are susceptible to 

developing large deformations at strong shaking levels (i.e., when the frictional shear resistance is 

exceeded). Excessive distortion of surface zones can lead to premature stoppage of a simulation, 

particularly for soils that liquefy or cyclically soften. Some analysts will use Mohr Coulomb materials 

in lieu of complex sand models for surface zones, for which they can then include a nominal amount 

of cohesion to reduce the potential for surficial shear failures. In the current version of PM4Sand, a 

similar effect can be achieved by increasing the nominal shear resistance chg above the default value 

used to control hour-glassing in liquefied zones. 

 

Loading conditions that cause a progressive increase in the mean effective stresses in PM4Sand, or 

any other pressure-dependent material, require special consideration during the solution process. The 

elastic moduli will increase with increasing mean effective stress, such that the time step required for 

a stable solution will decrease as the loading progresses. FLAC only determines the required time step 

at certain instances, like when the step or solve commands are executed. For this reason, the loading 

should be applied in small increments with the solve command periodically repeated so that the required 

time step is updated as appropriate during the applied loading. 

 

Initial stresses in a boundary value problem are sometimes established using simpler constitutive 

models, like a Mohr Coulomb or elastic model, prior to switching the materials to a more complex 

model like PM4Sand. Problems can develop if the initial states of stress fall outside the greater of the 

bounding and dilatancy surface lines for the PM4Sand model. This can happen in zones where the 

initial state of stress was computed for a Mohr Coulomb material with a nonzero cohesion or for an 

elastic material. For this reason, it is helpful to first ensure that the initial states of stress in all zones 

correspond to a stress ratio that is less than some reasonable limit prior to switching the material model 

to PM4Sand.  

 

The ability to use the DLL with FLAC's "free-field" lateral boundary conditions option or compliant 

base option has not been configured at this time. Thus, the user should not have PM4Sand in the outer 

column of elements against which the free-field lateral boundary condition will be applied. Instead, the 

outer columns can be replaced with elastic materials having a secant modulus compatible with the 

adjacent PM4Sand zones. 
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Table 3.1: Simplified pseudo-code of PM4Sand (Version 3.3) 

 
Operations within one subzone: 

1. Initialize the model parameters; this only happens when the model is first assigned or when FirstCall is set to zero 

at some point during the analysis. For detailed information on what parameters are initialized (or reset) see Table 

3.2. 

2. Obtain the strain increment from FLAC 𝑑𝜺. 

3. Decompose the strain increment into volumetric and deviatoric components, 𝑑𝜀𝑝  and 𝑑𝜀𝑠. 

4. Calculate the trial elastic stress increment and trial elastic stress: 

tr 0 tr 0 vd 2Gd Kd= + = + +σ σ σ σ e I  

5. Calculate the trial stress ratio ,rtr the distance from the yield surface 𝑑𝑖𝑠𝑡, the unit normal to the yield 

surface n and the inner product of the change in back-stress ratio tensor with unit normal vector daxn. 

σ I
r tr tr
tr

tr

p

p

−
=  

( ) ( )tr 0 tr 0dist := − −r α r α  

( )tr 0

dist

−
=

r α
n  

( )0 indaxn := −α α n  

6. Check for yield: 

a. If elastic then commit the trial stresses. Go to step 8. 

1
dist m

2
  

0 tr=σ σ  

b. If inelastic: 

i. Calculate loading index L: 

2 : :

2 :

v

p

G d Kd
L

K G KD

−
=

+ −

n e n r

n r
 

ii. Calculate trial stress increment and trial stress: 

 tr 0 tr 0 s pd 2Gd Kd L 2G KD= + = + + − +σ σ σ σ ε I n I  

iii. Apply penalties to stress ratios and back-stress ratios to meet the consistency condition and to remain 

within the greater of the bounding and dilatancy surfaces. 

iv. Calculate image back-stress ratios and inner products: 

1
2

b bM m = − α n  

1
2

d dM m = − α n  

1
2

dR dRM m = − α n  

v. Commit the trial stresses (back-stress ratios, stress ratio, mean stress, stress) 

7. Return all stress tensor components to FLAC (at this point FLAC takes over and will average them according to 

the mixed discretization scheme) 

 

 
Operations referring to the whole zone: 

8. After the calculation has completed the 4th subzone, the following additional calculations are performed for the 

overall zone. Recall the following parameters for all 4 subzones and compute area-weighted average values for: 

• Volumetric strain pd   

• Strain increment dε  
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• Mean stress p  

• Stress tensor (committed one) 0σ  

• Back-stress ratio tensor 0α  

• Unit normal to yield surface vector n  

9. Apply penalties to the averaged zone parameters to meet the consistency condition and maintain the yield surface 

inside the greater of the bounding and dilatancy surfaces.  

10. Calculate image back-stress ratios and inner products for the averaged zone parameters. 

11. Calculate daxn for the averaged zone parameters and determine whether a loading reversal has occurred. 

12. Compute Dilatancy D and Plastic Modulus Kp for the past average step in the zone. 

13. Compute plastic volumetric strain for use in fabric terms. 

14. If ( )d :−α α n  < 0, update the fabric tensor for the zone and if exceeding its former value, update the cumulative 

fabric term. 

( )
pl

vz
max

cum

max

dc
z

Dz
max 1,

2z


= −

 
 
 

z z n + z  

 

15. Update the relative state parameter, the bounding and dilatancy stress ratios, the elastic shear modulus (depends on 

fabric) and the elastic bulk modulus for the next step. 

16. Update the initial and previous initial back-stress values and the strain increment accumulators. 

17. Update initial back-stress ratios upon reversal. 

18. Commit zone stress tensor, zone mean stress, zone back-stress ratio tensor, zone stress ratio tensor to memory. 
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Table 3.2: Initialization function of PM4Sand (called during the first application of the model and 

whenever First_Call=0) 

 

1. Obtain stresses from FLAC and create stress tensor (these will be the committed stresses from which the calculation 

will start): 

𝝈𝝄
𝒊𝒋

 

2. Check stresses and calculate mean effective stress: 

a. If stresses compressive (following FLAC’s sign convention that tensile stresses and strains are positive): 

𝜎𝜊
11 < 0 →  𝑝𝑜  =  𝑚𝑖𝑛 (𝑝𝑚𝑖𝑛,

1

2
𝜎𝜊

𝑖𝑖) 

𝑝𝑚𝑖𝑛 = 𝑚𝑖𝑛 (𝑝𝑚𝑖𝑛,
𝑝

200
) 

𝑝𝑚𝑖𝑛2 = 𝑚𝑖𝑛 (𝑝𝑚𝑖𝑛2,
𝑝

20
) 

b. If stresses tensile: 

𝜎𝜊
11 > 0 →  𝑝𝑜  =  −

𝑃𝑎𝑡𝑚

20
 

𝝈𝝄
𝒊𝒋

= 𝑝𝑜 ∙ [𝐼] 
 

3. Calculate relative state parameter and subsequently calculate the bounding and dilatancy stress ratios and Ado (from 

input property DR and secondary parameters R, Q, nb and nd – see Chapter 4): 

𝜉𝑅 =
𝑅

𝑄 − 𝑙𝑛 (−100
𝑝

𝑃𝑎𝑡𝑚
)

− 𝐷𝑅 

a. If dense-of-critical (𝜉𝑅 < 0): 

𝑀𝑏 = 𝑀𝑒𝑥𝑝(−𝑛𝑏𝜉𝑅) ,   𝑀𝑑 = 𝑀𝑒𝑥𝑝(𝑛𝑑𝜉𝑅)    

𝐴𝑑𝑜 = 2.5 [
𝑠𝑖𝑛−1 (

𝑀𝑏

2 ) − 𝜑𝑐𝑣

𝑀𝑏 − 𝑀𝑑
] 

b. If loose-of-critical (𝜉𝑅 > 0): 

𝑀𝑏 = 𝑀 ∙ 𝑒𝑥𝑝 (−
𝑛𝑏

4
𝜉𝑅) ,   𝑀𝑑 = 𝑀 ∙ 𝑒𝑥𝑝(4𝑛𝑑𝜉𝑅), 𝐴𝑑𝑜 = 1.24 

4. Check that initial stresses are inside the greater of the bounding and dilatancy surfaces and compute the committed 

back-stress and stress ratio tensors from the stress tensor: 

𝑀𝑐𝑢𝑡 = 𝑚𝑎𝑥(𝑀𝑏 , 𝑀𝑑)  ,   𝑀𝑓𝑖𝑛 = −
2

𝑝0
∙ √

1

2
(𝝈𝝄

𝒊𝒋
− 𝑝𝑜[𝐼]): (𝝈𝝄

𝒊𝒋
− 𝑝𝑜[𝐼]) 

a. If 𝑀𝑓𝑖𝑛 > 𝑀𝑐𝑢𝑡  𝑤ℎ𝑒𝑟𝑒 𝑀𝑐𝑢𝑡  𝑖𝑠 𝑡ℎ𝑒 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑜𝑓 𝑀𝑏  𝑎𝑛𝑑 𝑀𝑑: 

𝒓𝝄
𝒊𝒋

= (
𝝈𝝄

𝒊𝒋
− 𝑝𝑜[𝐼]

𝑝𝑜

) (
𝑀𝑐𝑢𝑡

𝑀𝑓𝑖𝑛
) 

 

𝝈𝝄
𝒊𝒋

= 𝑝𝑜[𝐼] + 𝒓𝝄
𝒊𝒋

𝑝𝑜 

 

𝜶𝝄
𝒊𝒋

= 𝒓𝝄
𝒊𝒋

∙
𝑀𝑐𝑢𝑡 − 𝑚

𝑀𝑐𝑢𝑡
 

 

 

b. If 𝑀𝑐𝑢𝑡 > 𝑀𝑓𝑖𝑛: 

𝒓𝝄
𝒊𝒋

= (
𝝈𝝄

𝒊𝒋
− 𝑝𝑜[𝐼]

𝑝𝑜
) 
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𝜶𝝄
𝒊𝒋

= 𝒓𝝄
𝒊𝒋

 

5. Create/Initialize the initial back-stress ratio, initial previous back-stress ratio, minimum initial back-stress ratio and 

maximum initial back-stress ratio tensors (see also Section 2.5 on Stress Reversal): 
 

a. If 𝑀𝑓𝑖𝑛 < 0.9𝑀𝑏: 

𝜶𝒊𝒏
𝒊𝒋

= 𝜶𝝄
𝒊𝒋

 

b. If  𝑀𝑓𝑖𝑛 > 0.9𝑀𝑏: 

𝜶𝒊𝒏
𝒊𝒋

= 𝜶𝝄
𝒊𝒋

(
0.9𝑀𝑏

𝑀𝑓𝑖𝑛
) 

 Note that 𝑀𝑓𝑖𝑛 in the above expression would have been updated if step 4 had required adjusting the stresses. The 

other back-stress ratio history terms are then set as:  

 

𝜶𝒊𝒏𝑷
𝒊𝒋

= 𝜶𝒊𝒏𝑴𝒂𝒙
𝒊𝒋

= 𝜶𝒊𝒏𝑴𝒊𝒏
𝒊𝒋

= 𝜶𝒊𝒏
𝒊𝒋

 

 

6. Calculate initial values of elastic shear modulus, elastic bulk modulus, plastic modulus, dilatancy: 

𝐺 = 𝐺𝑜𝑃𝑎𝑡𝑚√
−𝑝𝑜

𝑃𝑎𝑡𝑚
 

 

𝐾 = 𝐺
2(1 + 𝑣)

3(1 − 2𝑣)
 

 

𝐾𝑝 = 100𝐺 

 

𝐷 =  0 

 

7. Initialize fabric related terms (see Section 2.8) – note that these terms will be referring to the whole zone: 

𝑝𝑧𝑝 =
𝑝𝑜

100
 

 

𝑧𝑝𝑒𝑎𝑘 =
𝑧𝑚𝑎𝑥

100000
 

 

𝑧𝑥𝑝 =  𝒛: 𝑝 =  0 

 

𝑧𝑥𝑝𝑃𝑘 = −𝑧𝑚𝑎𝑥

𝑝𝑜

50
 

 

𝒛𝒊𝒋 = 𝒛𝒊𝒏
𝒊𝒋

= 𝒛𝜶
𝒊𝒋

= 𝑧𝑐𝑢𝑚 = 0 
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Figure 3.1. Schematic illustration of the averaging procedure followed in the implementation of 

PM4Sand: zone-averaged values are computed for some internal variables of the model, denoted as 

“m”, at the end of each step, after which other internal parameters, denoted as “q”, are computed 

based on the zone-averaged parameters. 
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Figure 3.2. Effect of dynamic time step on the results obtained from (a) drained and (b) undrained 

cyclic DSS element test simulations (DR=55%, σ'vo=1atm) loaded at a shear strain rate of 12%/s. 

The black line in each case denotes the response obtained with FLAC’s default dynamic time 

step. 
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Figure 3.3. Effect of dynamic time step on the results obtained from (a) drained and (b) undrained 

cyclic DSS element test simulations (DR=55%, σ'vo=1atm) loaded at a shear strain rate of 4%/s. 

The black line in each case denotes the response obtained with FLAC’s default dynamic time 

step. 
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Figure 3.4. Effect of dynamic time step on seismic analysis of an embankment dam: cross-section, 

materials, and displacement monitoring points (top figures) and time histories of crest settlement and 

horizontal displacements for points on the upstream and downstream faces (lower figures). 
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4. MODEL INPUT PARAMETERS AND RESPONSES 

 

4.1  Model input parameters 

 

The model parameters are grouped into two categories; a primary set of six parameters (three 

properties, two flags, and atmospheric pressure) that are most important for model calibration, and a 

secondary set of parameters that may be modified from their default values in special circumstances. 

 

Primary input parameters 

 

The three primary input properties are the sand’s apparent relative density DR, the shear modulus 

coefficient Go, and the contraction rate parameter hpo. These three parameters are discussed below and 

summarized in Table 4.1. 

Relative density (DR) can be estimated in practice by correlation to penetration resistances. For 

example, a common form for SPT correlations is, 

 
( )1 60

R

d

N
D

C
=  (94)  

where DR is expressed as a ratio rather than a percentage. Idriss and Boulanger (2008) reviewed 

published data and past relationships, and then adopted a value of Cd = 46 in the development of their 

liquefaction triggering correlations. For the CPT, they similarly reviewed available relationships and 

arrived at the following expression, 

 

0 264

10 465 1 063

.

c N
R

dq

q
D . .

C

 
= −  

 
 

(95)  

for which they adopted Cdq = 0.9. For the example loading responses shown later, DR values of 35%, 

55%, and 75% were used, which would be correlated to SPT (N1)60 values of 6, 14, and 26 by the above 

correlations. 

The input value of DR is best considered an "apparent relative density," rather than a strict measure 

of relative density following conventional laboratory tests. The input value of DR influences the 

response of the model and thus it is just another input parameter that the user can adjust as part of the 

calibration process. The above correlations are provided for the purpose of obtaining a reasonable 

estimate for the apparent DR so that the resulting model behaviors are also reasonable. There are 

situations, however, where the user may choose to adjust the input DR, up or down relative to the above 

relationships, to improve its calibration to some other relationship or data.
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The second primary input parameter is the constant Go which controls the elastic (or small-strain) 

shear modulus. The equation for the elastic shear modulus (Equation 23) at the time of model 

initialization can be simplified to, 

 

1
2

o A

A

p
G G p

p

 
=  

 
 (96)  

The full equation for the elastic shear modulus includes adjustments for the effects of stress-ratio 

(Equation 24) and fabric (Equation 86), but these are both unity at the time of model initialization. The 

elastic shear modulus can be calibrated to fit in-situ Vs measurements, according to, 

 ( )
2

sG V=   (97)  

or alternatively fit to values of Vs that may be estimated by correlation to penetration resistances. For 

the examples shown herein, the correlation by Andrus and Stokoe (2000) in Figure 4.1 was used, with 

a slight modification that constrains the extrapolation to very small (N1)60 values, as shown in the figure, 

 ( )
0.25

s1 1 60
V 85 N 2.5 = +   (98)  

The above relationships in combination with the default values for the maximum and minimum 

void ratios (described later) produce Vs1 values of 145, 171, and 196 m/s and corresponding Go values 

of 477, 677, and 906 for the DR values of 35%, 55%, and 75%, respectively. 

Calibration of G to fit in-situ Vs measurements requires an estimate for the in-situ coefficient of earth 

pressure at rest (Ko) for computing p (i.e., the mean of the vertical and horizontal stresses for the present 

2D implementation; Equation 2). Maintaining consistency between the calibration procedure and the 

boundary value problem solution requires that the initial Ko conditions in the boundary value problem 

reasonably match the value assumed during calibration.  

Alternatively, the above expressions were combined together with a range of typical densities to 

arrive at the following simpler expression for estimating Go, 

 ( )o 1 60
G 167 N 2.5= +  (99)  

This expression produces Go values of 487, 678, and 892 for the DR values of 35%, 55%, and 75%, 

respectively. 

The third primary input parameter is the constant hpo which is used to modify the contractiveness 

and hence enable calibration of the model to specific values of cyclic resistance ratio (CRR). For the 

examples presented herein, the target CRR values were based on the liquefaction triggering correlation 

by Idriss and Boulanger (2008) in Figure 1.2. This relationship produces target CRR values for an 

effective overburden stress of 1 atm and an earthquake magnitude of M=7.5 of 0.090, 0.147, and 0.312 
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for the corresponding SPT (N1)60 values of 6, 14, and 26, respectively. The corresponding values of hpo 

to achieve these CRR values, given the already set values for DR and Go, are 0.52, 0.40 and 0.62, 

respectively. 

The value of atmospheric pressure, pA, should also be specified in the unit set being used for the 

analysis. If not specified, it will default to 101,300 Pascal. 

The flag FirstCall is used to re-set the back-stress ratio history terms equal to the current stress ratio, 

and to erase all fabric terms. The first time the model is called, the flag should be unspecified or have 

a value of 0. The model will then initiate the back-stress ratios and all pertinent history terms using the 

current state of stress. The flag is then set equal to 1.0 internally. If FirstCall is later set equal to 0.0 

using the property command in FLAC, this will cause the material to re-initiate all internal terms, 

thereby re-setting the back-stress and stress ratio history terms and erasing all fabric terms. FirstCall 

should usually be set to 0.0 just before initiating dynamic earthquake loading. Otherwise, the model 

will retain memory of the loading during the static initiation of the model, which may or may not be 

desired. 

The flag PostShake is used during the post-shaking portion of a simulation to improve the modeling 

of post-liquefaction reconsolidation strains. The flag is set to 0 internally and remains 0 unless the user 

specifies otherwise. If the flag is set to 1.0, the elastic moduli will be reduced according to the 

expressions presented previously. PostShake should only be set to 1.0 at the end of strong shaking, as 

the reductions in elastic moduli were not calibrated for cyclic loading behavior.  
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Table 4.1 – Primary input parameters (parameter names in square brackets correspond to the input 

name to be used within FLAC) 

 

Parameter 

[FLAC property 

name] 

Comments 

DR 

[D_r] 

Apparent relative density: Primary variable controlling dilatancy 

and stress-strain response characteristics. Input as a fraction, not as 

a percentage. 

 

Commonly estimated based on CPT or SPT penetration resistances, 

such as the following relationships used by Idriss and Boulanger 

(2008): 

  
with Cd = 46, and  

0 264

10 465 1 063
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dq
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D . .
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 
= −  

   

with Cdq = 0.9.  

Go 

[G_o] 

Shear modulus coefficient: Primary variable controlling the small 

strain shear modulus, Gmax.  Should be chosen to match estimated or 

measured shear wave velocities according to Gmax =  Vs
2. 

 

A value for Go can be estimated based on the modified correlation 

between SPT (N1)60 and Vs1 values shown in Figure 4.1. The value 

of Go can thus be computed as, 

 ( )1 60
167 2 5oG N .= +  

hpo 

[h_po] 

Contraction rate parameter: Primary variable that adjusts 

contraction rates and hence can be adjusted to obtain a target cyclic 

resistance ratio, as commonly estimated based on CPT or SPT 

penetration resistances and liquefaction correlations. 

 

Calibration of this parameter should be performed last because its 

value can depend on the values assigned to other parameters. 

pA 

[P_atm] 

Atmospheric pressure in the unit set being used. Defaults to 

101,300 Pascals if not specified. 

FirstCall 

[First_Call] 

Flag used to re-set the back-stress ratio history terms equal to the 

current stress ratio, and to erase all fabric terms. FirstCall should 

usually be set to 0.0 at model initiation and/or just before initiating 

dynamic earthquake loading. Otherwise, the model will retain 

memory of the loading during the static initiation of the model, 

which may or may not be desired. 

( )
=

1 60
R

d

N
D
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PostShake 

[Post_Shake] 

Flag used during post-shaking portion of a simulation to improve 

modeling of post-liquefaction reconsolidation strains. PostShake 

should only be set to 1.0 after the end of strong shaking.  

 

Secondary input parameters 

 

Secondary input parameters are those parameters for which default values have been developed that 

will generally produce reasonable agreement with the trends in typical design correlations. The user 

must, however, still confirm through element loading calibrations that the default parameters are 

appropriate for their particular conditions. The secondary input parameters (21 in total) are listed in 

Table 4.2, along with commentary on the recommended default values.  

The recommended default values for all secondary parameters have been embedded within the 

initialization section of the code and thus these parameters will take their default values unless the user 

specifies otherwise.  In addition, the input logic is structured such that secondary parameters will take 

their default value if the user inputs a value of zero for that parameter.  

 

Table 4.2 – Secondary input parameters 

 

Parameter 

[FLAC name] 
Comments 

ho 

[h_o] 

Variable that adjusts the ratio of plastic modulus to elastic modulus. The 

default value of ho=(0.25+DR)/2, with a minimum value of 0.30, was chosen 

to provide reasonable G/Gmax and damping relationships for the default 

value of Go. This variable may require adjustment in combination with any 

adjustments to Go. 

emax and emin 

[e_max]  

[e_min] 

The maximum and minimum void ratios affect the computation of density, 

and affect how volumetric strains translate into changes in relative state.  

Default values of 0.8 and 0.5, respectively, were adopted.  Refinements in 

these parameters for a practical problem may not be necessary, as the 

calibration of other parameters will have a stronger effect on monotonic or 

cyclic strengths. 

nb 

[n_b] 

Default value is 0.50. Controls dilatancy and thus also the peak effective 

friction angles. Note that Mb for loose-of-critical states is computed using 

nb/4.  

nd 

[n_d] 

Default value is 0.10. Controls the stress-ratio at which contraction 

transitions to dilation, which is often referred to as phase transformation. A 

value of 0.10 produces a phase transformation angle slightly smaller than 

cv, which is consistent with experimental data. Note that Md for loose-of-

critical states is computed using 4nd. 

Ado 

[A_do] 

Default value is computed based on Bolton's dilatancy relationship at the 

time of initialization; typical values will be between 1.2 and 1.5. 
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zmax 

[z_max] 

Default value is computed at the time of initialization as, 

 ( )0.70 exp 6.1 20max Roz =  −    

This returns 0.7 if R is initially 0.0, and increases to its maximum value of 

20 with increasing dense-of-critical states. May require varying if the 

relationship between DR and cyclic strength is significantly different from 

that implied by the liquefaction correlations of Idriss and Boulanger (2008). 

Cz 

[c_z] 

Default value is 250. Controls strain levels at which fabric affects become 

important.  

C 

[c_e] 

Default value varies with DR. The value is 0.5 for DR less than 55%, and 

linearly decreases to its minimum value of 0.2 at DR = 75%.  Can be used 

to adjust the rate of strain accumulation in undrained cyclic loading. 

'cv 

[phi_cv] 

Default value is 33 degrees. 

 

[pois] 

Default value is 0.30. For 1-D consolidation of an elastic material, the 

value of Ko would correspond to, 

  

The default value for  results in a Ko value of 0.43 in 1-D consolidation. 

CGD 

[G_degr] 

Default value is 2.0. The small-strain elastic modulus degrades with 

increasing cumulative plastic deviator strains (zcum). The maximum 

degradation approaches a factor of 1/CGD. 

CDR 

[C_DR] 

Default value is computed at the time of initialization as, 

 CDR = 5+ 25 (DR - 0.35) ≤ 10 

Controls the rotated dilatancy surface and is applied to reduce the rate under 

which dilatancy is increasing.
 

CKf 

[C_kaf] 

Default value varies with DR. as,  
 ( )  

3
5 220 0.26 4.0;35.0K f RoC D = +  −   

The value is 4.0 for DR less than 10%, and increases to its maximum value 

of 35.0 at DR = 77%. This variable controls the effect that sustained static 

shear stresses have on plastic modulus.  

Q 

[Q_bolt] 

Default value is 10. Default value is for quartzitic sands per 

recommendations of Bolton (1986). 

R 

[R_bolt] 

Default value is 1.5. Default value for quartzitic sands would be 1.0 per 

recommendations of Bolton (1986); a slight increase in R is used to lower 

the critical state line to better approximate typical results for direct simple 

shear loading. 

m 

[m_par] 

Default value is 0.01. Default value provides reasonable modeling and 

numerical stability.  

Fsed,min 

[F_sedmin] 

Default value is set at time of initialization and equal to 0.04. Controls the 

minimum value the reduction factor of the elastic moduli can attain during 

reconsolidation (used when Post_Shake=1.0). 

p'sed,o  

[p_sedo] 

Default value is –Patm/5. It is the mean effective stress up to which 

reconsolidation strains are enhanced when Post_Shake=1.0 


=

− 
oK

1



 79  

 

crhg  

[MC_ratio] 

Nominal plastic shear strength ratio used to compute chg at the time of 

initialization or when FirstCall is set equal to 0. Default value is 0.005. 

chg 

[MC_c] 

Nominal plastic shear strength assigned at initialization or when FirstCall 

is set equal to 0. It is computed as the greater of: (1) crhg times p, and (2) 

the user-specified value for chg. Thus, the user-specified value for chg is the 

minimum value it will be assigned.  

 

Tracking variables 

 

Many of the parameters internal to PM4Sand may be tracked for debugging purposes. The table 

below lists six internal parameters which may be of interest. Other internal parameters which can be 

tracked include: max_G, max_K, pmin, pmin2, MM, alfa_11, alfa_12, r_11, r_12, aIn_11, aIn_12, 

aInP_11, aInP_12, z_11, z_12, zcum, zpeak, zxpPk, pzp, zxp, Cka, eqsum, evsum, LoadInd, Dilat, Kp, 

zabs, evol, eq_11, eq_22, eq_12, epsIncr and daxn. Note that Cka tracks the product of the Crev and Ck 

terms. Other internal parameters are visible through the FLAC interface, and can be phonetically 

mapped to different terms in constitutive equations in this manual. 

 
 

Table 4.3 – Internal parameters available for tracking 

 

Parameter [FLAC Name] Comments 

Mb  

[Mb] 
Bounding surface stress ratio 

Md  

[Md] 
Dilatancy surface stress ratio 

Mcur 

[Mcur] 
Current stress ratio 

G  

[shearG] 
Elastic shear modulus  

K  

[bulkK] 
Elastic bulk modulus 

ξR  

[rsp] 
Relative state parameter 

DR  

[Dr] 

Relative density, which evolves in response to 

volumetric strains. Note that the input 

parameter D_r  is an initial parameter and does 

not evolve during an analysis.  
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4.2  Example calibration and model responses for a range of element loading conditions 

 

The response of the model is illustrated in this section by presenting simulation results for a set of 

input parameters that were calibrated to emphasize realistic modeling of liquefaction behavior.  Results 

are presented for sands having initial apparent relative densities of 35%, 55%, and 75% with 

corresponding SPT (N1)60 values of approximately 6, 14, and 26, respectively, based on the correlations 

presented previously. All secondary input parameters were assigned the default values summarized 

previously in Table 4.2. Values for Go were obtained using the previously presented correlation 

between SPT (N1)60 values and overburden-corrected shear wave velocity VS1 (Figure 4.1).  Values for 

hpo were obtained by matching the CRR values from direct simple shear (DSS) simulations with the 

CRRM=7.5 values that were computed using the SPT-based liquefaction triggering correlation by Idriss 

and Boulanger (2006, 2008); an SPT-based estimate of CRR for an M=7.5 earthquake and effective 

overburden stress of 1 atm was assumed to be approximately equal to the CRR corresponding to 15 

uniform loading cycles causing a peak shear strain of 3% in direct simple shear loading. The model 

input parameters for the examples presented in this section are summarized in Table 4.4 below. 

 

Table 4.4. Input parameters for example element responses 

 

Scenario field condition Model input parameters (a) 

DR (N1)60 

VS1 using 

Andrus & 

Stokoe (2000) 

CRRM=7.5 

using Idriss & 

Boulanger (2008) 

DR Go hpo 

0.35 6 145 0.090 0.35 477 0.52 

0.55 14 171 0.147 0.55 677 0.40 

0.75 26 196 0.312 0.75 906 0.62 

(a) All secondary input parameters were assigned the default values listed in Table 4.2. 

 

Undrained cyclic loading 

 

The undrained cyclic loading responses for the calibrated models are illustrated in Figures 4.2-4.4. 

These figures show the stress-strain and stress-path responses for undrained uniform cyclic loading in 

DSS with a vertical consolidation stress of 1 atm and initial static shear stress ratios () of 0.0, 0.1, and 

0.2.  Results for initial DR of 35%, 55%, and 75% are presented in Figures 4.2, 4.3, and 4.4, respectively. 

Close up views of the stress-strain responses for DR=35%, 55%, and 75% with an initial static shear 

stress ratio  = 0.0 are presented in Figure 4.5. 

The stress-strain responses for  = 0.0 illustrate the model’s ability to progressively reach larger 

and larger shear strains with continued cyclic loading, rather than locking up in a repeating loop as 

many plasticity models do. The ability to simulate the progressive accumulation of shear strains reflects 

the inclusion of the cumulative fabric terms, as described previously. The progressive increases in peak 

shear strain after the soil has reached a peak excess pore pressure ratio (ru) greater than 98% are realistic 

in magnitude. 
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The stress-strain responses with nonzero initial static shear stresses show a progressive 

accumulation of shear strains in the direction of the initial static shear stress, with the rate and nature 

of the stress-strain response also being reasonably realistic. 

 

CRR versus number of loading cycles – Effect of DR and failure criterion 

 

The CRR obtained for the calibrated models are summarized in Figure 4.6 showing the cyclic stress 

ratio (CSR) required to cause an excess pore pressure ratio (ru) of 98% or single-amplitude shear strains 

of 1% and 3% versus number of uniform loading cycles. These results are for DSS loading with a 

vertical consolidation stress of 1 atm, an initial Ko of 0.5, and zero initial static shear stress ratio (=). 

The simulation results in this figure were fitted with a power law, for which the exponent “b” is labeled 

beside each curve. 

The slopes of these CRR versus number of loading cycles are in good agreement with typical values 

obtained in laboratory testing studies. The exponent b is generally between 0.24 and 0.27 for these 

simulations. For the experimental data in Figure 1.3 the exponent b ranges from a low of 0.1 for one 

study on to a high of 0.34 for another. The ability of the model to produce reasonable slopes for these 

curves is attributed primarily to the changes in the plastic modulus and dilatancy relationships 

(Ziotopoulou and Boulanger 2012).  

 

The slopes of the CRR versus number of loading cycle curves can be slightly adjusted by the 

parameters nb and nd. For example, repeating the same simulations for DR=75% with nb=0.8 (versus 

the value of 0.5 used herein) and with all other factors the same, increases the exponent b to values of 

0.28 to 0.33. Ziotopoulou and Boulanger (2012) performed the same simulations using an earlier set of 

calibration parameters and got values for the exponent b ranging from 0.26 to 0.36. Note, however, that 

a greater value for nb also results in greater peak friction angles and changes other responses as well, 

so such adjustments cannot be made independent of other features of behavior. 

 

CRR versus number of loading cycles – Effect of confining stress 

 

The effect of overburden stress on CRR for the calibrated models is illustrated in Figure 4.7 showing 

the CSR required to cause a single-amplitude shear strain of 3% versus number of uniform loading 

cycles for different confining stresses. These results are for DSS loading with initial Ko=0.5, initial 

static shear stress ratio () of 0.0, and vertical consolidation stresses of 1, 4, and 8 atm. The cyclic 

strengths for DR=35% are the least affected by confining stress, while the cyclic strengths for DR=75% 

are the most affected (reduced). 

The equivalent K values from these simulations, with the CRR values compared at 15 uniform 

loading cycles, are compared in Figure 4.8 to the relationships recommended by Boulanger and Idriss 

(2004) based on the framework presented in Boulanger (2003b). The simulated effects of confining 

stress are in good agreement, as expected since the expression for hpo was calibrated to this relationship. 
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CRR versus number of loading cycles – Effect of sustained shear stress 

 

Summary plots of the CSR required to cause a single-amplitude shear strain of 3% versus number 

of uniform loading cycles are presented in Figure 4.9 for different values of initial static shear stress 

ratio.  Results are presented for sand at DR=35%, 55%, and 75% loaded in DSS with an initial Ko=0.5, 

a vertical consolidation stress of 1atm, and with initial static shear stress ratios () of 0.0, 0.1, 0.2, and 

0.3. The model was initialized at the stress conditions corresponding to the end of 1D vertical 

consolidation, thereby setting the back-stress ratio terms prior to application of the initial horizontal 

static shear stress. The simulation results are reasonable in predicting that the presence of an initial 

static shear stress ratio results in lower cyclic strengths for loose sands (e.g., the DR = 35% results) and 

greater cyclic strengths for denser sands (e.g., the DR=75% results).  

The effect of vertical effective stress on these behaviors is illustrated in Figures 4.10a and 4.10b 

showing the cyclic resistance ratio (3% peak shear strain in 15 uniform cycles of DSS loading) against 

initial static shear stress ratio for DR of 35, 55, and 75% with vertical effective consolidation stresses 

of 100 and 400 kPa. Figures 4.10c and 4.10d show the same effects in terms of the static shear stress 

ratio strength correction factor Kα for the same overburden stresses. Increasing the vertical effective 

consolidation stress makes the material relatively more contractive, such that the effect of an initial 

static shear stress ratio is relatively more detrimental at 400 kPa than at 100 kPa. This general pattern 

is in agreement with experimental observations (Figure 1.5). 

CRR versus number of loading cycles – Effect of Ko 

 

Summary plots of the CSR required to cause a single-amplitude shear strain of 3% versus number 

of uniform loading cycles are presented in Figure 4.11 for different values of the lateral earth pressure 

coefficient at rest Ko (i.e., the ratio of horizontal to vertical effective stresses at the time of 

consolidation).  Results are presented for sand at DR=35%, 55%, and 75% loaded in DSS, a vertical 

consolidation stress of 1atm, and with zero initial static shear stress ratio. 

 

 

Drained monotonic loading 

 

The response for drained monotonic loading in direct simple shear (DSS) and plane-strain 

compression (PSC) for sand at DR of 35%, 55%, and 75% under vertical confining stresses of ¼, 1, 4, 

and 16 atm is shown in Figures 4.12 and 4.13. The responses reasonably approximate the effects of 

relative density and confining stress on both the stress-strain and volumetric strain responses. The plots 

show the response up to shear strains of 10%, while the simulations tend to reach critical state 

conditions at shear strains of 40-60%. The post-peak rate of strain-softening is dictated by the dilation 

rate, which is constrained to approximate Bolton’s (1986) stress-dilatancy relationship. The simulated 

post-peak softening is slower than often observed in experimental results (e.g., Figure 1.9) because 

drained laboratory experiments are often affected by strain localizations in dilating sands (e.g., Desrues 

et al. 1996, Sadrekarimi and Olson 2010); The rate of strain-softening in a dilating zone is much lower 

than represented by global measurements of stress and strain.  

The peak effective friction angles from simulations of drained monotonic loading in DSS and plane 

strain compression (PSC) are shown versus vertical consolidation stress in Figure 4.14 where they are 

also compared to Bolton’s (1986) relationship for plane strain conditions for Q=10 and R=1.5 (which 
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are the default values of Q and R that have been selected for the model). The peak friction angles are 

lower in DSS than in PSC because of the difference in how the friction angles are computed for this 

plot. For PSC, the peak friction angle is computed based on the peak stress ratio within the element, 

without any predetermined assumptions regarding the orientation of the plane on which it will occur.  

For DSS loading, the peak friction angle was computed as the inverse tangent of the peak stress ratio 

on the horizontal plane, following the same convention commonly used in practice for interpreting such 

tests. In the DSS simulation, however, the horizontal plane was not the plane of maximum stress 

obliquity, and therefore the interpreted peak friction angle is slightly lower than the value obtained in 

PSC.  Computationally, both the DSS and PSC mobilize similar peak friction angles if the comparison 

is made only for the plane of maximum stress obliquity in both simulations; In the DSS, however, the 

stress ratio on the horizontal plane in the DSS simulations is often closer to sin() as opposed to tan(), 

which results in the apparent differences shown in Figure 4.14. Despite these differences, the peak 

friction angles are reasonable and consistent with typical design correlations (e.g., Kulhawy and Mayne 

1990). 

 

Undrained monotonic loading 

 

The undrained monotonic loading in direct simple shear (DSS) for sand at DR of 35%, 55%, and 

75% under vertical consolidation stresses of ¼, 1, 4, and 16 atm are shown in Figure 4.15, while the 

same responses are shown with normalization by the vertical consolidation stress in Figure 4.16. The 

stress-strain responses show strain hardening behavior at lower relative states than would be expected 

based on the experimental results for reconstituted sands, such as presented by Yoshimine et al. (1999). 

Experiments on loose reconstituted sands often show strain softening to some minimum shear stress 

ratio (e.g., quasi-steady state condition) before beginning to strain harden, and that minimum stress 

ratio is often in the range of 0.1 to 0.3. For the present calibration, the CRR for DR = 35% sands under 

1 atm of confining stress was targeted to be 0.090 based on a field-based liquefaction correlation, and 

it was not possible to calibrate the model to match both the target CRR values and the monotonic 

undrained strengths presented in Yoshimine et al. (1999). If the monotonic behavior was more 

important than the CRR values, then a different calibration would be required.  

 

Drained, strain-controlled, cyclic loading from small to large strains 

 

Drained strain-controlled cyclic loading in DSS for sand at DR of 35%, 55%, and 75% under vertical 

consolidation stresses of 1, 4, and 16 atm with Ko=1.0 are shown in Figures 4.17 to 4.19, with results 

also shown for the equivalent modulus reduction (G/Gmax) and equivalent damping ratio (ξ) versus 

cyclic shear strain amplitude (γ). Also shown on these figures are the modulus reduction and equivalent 

damping ratio curves recommended for sands at different depths by EPRI (1993). The simulated 

modulus reduction and equivalent damping ratio curves depend on the effective confining stress in a 

pattern and magnitude that is consistent with empirical design correlations, such as the ones by EPRI. 

The simulated modulus reduction curves for this calibration tend to be slightly higher than the empirical 

curves, whereas the simulated equivalent damping ratios are in reasonable agreement with the empirical 

curves over a fairly broad range of shear strain amplitudes. The model response for this calibration 

avoids the problem common to many plasticity models of producing excessively high equivalent 

damping ratios as shear strain amplitudes approach about one percent. 
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Drained, strain-controlled cyclic loading: Densification under large numbers of cycles 

 

Drained strain-controlled cyclic loading in DSS for sand at DR of 35%, 55%, and 75% subjected to 

20 cycles at 1% shear strain under a vertical effective stress of 1 atm are presented in Figure 4.20 to 

illustrate the accumulation of volumetric strains with increasing number of constant-amplitude strain 

cycles. The model response with this calibration produces volumetric strains that are about twice the 

values expected based on the empirical data presented in Figure 1.12, although the general pattern of 

stress-strain behavior and its dependency on DR and confining stress are reasonably consistent with the 

empirical data. Alternative model calibrations can produce better agreement with these behaviors, but 

they were generally found to require compromising the fit to the CRR correlations. 

 

Post-liquefaction reconsolidation strains 

 

The volumetric strains that develop during post-liquefaction reconsolidation of sand are difficult to 

model using the conventional separation of strains into elastic and plastic components because a large 

portion of the post-liquefaction reconsolidation strains are due to sedimentation effects (i.e., volume 

reductions while the effective stresses remain close to zero) which are not easily incorporated into either 

the elastic or plastic components of behavior. For example, it is common for many plasticity-based 

constitutive models to predict reconsolidation volumetric strains from a condition of ru=100% that are 

only a fraction of one percent (Ziotopoulou and Boulanger 2013b), whereas experimental data show 

values ranging from one to four percent for most relative densities (e.g., Figure 1.12). 

Volumetric strains due to post-cyclic reconsolidation, with and without the PostShake 

[Post_Shake = 1.0] option, are plotted in Figure 4.21 versus the maximum shear strain induced 

during undrained cyclic loading. Results are shown for sand at DR = 35%, 55%, and 75% loaded in 

DSS with an initial Ko=0.5, a vertical consolidation stress of 1 atm, and zero initial static shear stress 

ratio. After cyclic loading to different maximum shear strains, the horizontal shear stress was reduced 

to zero such that the excess pore pressure was near its maximum possible value (e.g., ru was 

approximately 98% or larger for cases with maximum shear strains of 3% or greater). The computed 

volumetric strains were less than about 0.25% with PostShake = 0 (default value) and are much smaller 

than expected based on common experimental data. The computed volumetric strains with 

Post_Shake = 1.0 (imposed at the end of cyclic loading) are in much closer agreement with 

experimental data (Figure 1.14).  

 

4.3  Example calibration with user-defined critical state undrained shear strength 

 

Calibration of the model to a specified undrained critical state shear strength (su,cs) is illustrated in 

this section. The su,cs for any set of calibration parameters can be computed from the critical state line 

(Figure 2.1) as, 
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The critical state line parameters Q and R can be adjusted to fit an experimentally determined critical 

state line (e.g., Kamai and Boulanger 2012) or fit an su,cs estimated from a case history based correlation. 

Boulanger and Ziotopoulou (2018) illustrated how the model can be calibrated to a specific target su,cs 

by setting R according to, 
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The logic of this approach is illustrated in Figure 4.22 wherein the target su,cs is used to compute pcs 

given M, which is then used to compute R given DR and Q. Alternatively, the above expression can be 

rearranged to obtain the target su,cs by adjusting Q instead of R.  

 

The calibration of R or Q to obtain a target su,cs is based on the su,cs corresponding to the current DR. 

If a numerical simulation procedure imposes undrained conditions (no fluid flow) such that the DR does 

not change significantly during the simulation, then the model will produce the target su,cs at large shear 

strains. If a numerical simulation allows fluid flow, then the DR may increase or decrease throughout 

the simulation depending on the pore pressure diffusion pattern. In this latter case, the resulting changes 

in su,cs during the simulation (per the above equations) needs to be recognized by the user. 

 

Consider the example calibration for DR = 35% in Section 4.2. This example calibration, referred 

to as Calibration 1 below, used Go = 477 and hpo = 0.52 with all other parameters retaining their default 

values. Recall that Q and R have default values of 10 and 1.5, respectively. That calibration produces 

a su,cs value of, 
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For a zone with vc = 100 kPa, this corresponds to an initially dense-of-critical-state condition that 

produces su,cs/ vc = 1.67. 

 

A revised calibration, referred to as Calibration 2, is now presented for a case where the calibration 

includes targeting an su,cs/ vc = 0.07 for a zone with vc = 100 kPa. The target su,cs is therefore only 7 

kPa, which is achieved by setting R to, 
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The target Vs1 and CRRM=7.5 values remain unchanged, which means Go remains unchanged whereas 

hpo had to be recalibrated to 2.2.  
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The responses of the above two calibrations to monotonic undrained DSS loading with vc = 100 

kPa are shown in Figure 4.23. Calibration 1 results in a strongly dilative response whereas Calibration 

2 produces the intended contractive response. 

 

The responses of the above two calibrations to cyclic undrained DSS loading with vc = 100 kPa 

and an imposed CSR = 0.090 are shown in Figure 4.24. Calibration 1 produces a cyclic mobility 

response wherein cyclic shear strains progressively accumulate during cyclic loading. The specimen 

never develops flow liquefaction because it is always dense of critical state. Calibration 2 exhibits flow 

liquefaction, which is triggered by the generation of excess pore pressures during the cyclic loading. 

The specimen develops flow liquefaction because the peak shear stresses imposed during cyclic loading 

are greater than the su,cs. 

 

The representation of post-liquefaction residual shear strengths in practice is complicated by various 

challenges and limitations as discussed in Boulanger et al. (2014, 2015). The su,cs mobilized in the field, 

and the timing at which it is mobilized, will depend on pore pressure diffusion and associated void 

redistribution processes, which depend on the soil properties (e.g., initial relative density, cyclic 

strength, permeability), subsurface stratigraphy (e.g., layer thicknesses, slope angles, continuity of 

interfaces), and ground motion characteristics (e.g., shaking intensity, shaking duration, shaking 

history). Simulation of void redistribution processes and their timing are highly uncertain, such that 

pragmatic approximations for representing post-triggering residual shear strengths during and after 

strong shaking are often used in practice (see Boulanger et al. 2015 for additional discussion). 
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Figure 4.1. Correlation between overburden-corrected shear wave velocity and  

SPT penetration resistances in clean sands (after Andrus and Stokoe 2000).  

0 10 20 30 40 50

SPT (N1)60

100

140

180

220

260

300

S
h

e
a

r 
w

a
v
e
 v

e
lo

c
it
y
, 
V

S
1
 (

m
/s

)

Clean sand data in Andrus & Stokoe (2000)

Andrus & Stokoe (2000): Vs1=93.2(N1)
0.231

Modified fit: Vs1=85(N1+2.5)0.25



 88  

 

 

 
 

Figure 4.2. Undrained cyclic DSS loading response for DR = 35% with vertical effective 

consolidation stress of 100 kPa and with initial static shear stress ratios of 0.0, 0.1, 

and 0.2. 
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Figure 4.3. Undrained cyclic DSS loading response for DR = 55% with vertical effective 

consolidation stress of 100 kPa and with initial static shear stress ratios of 0.0, 0.1, 

and 0.2. 
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Figure 4.4. Undrained cyclic DSS loading response for DR = 75% with vertical effective 

consolidation stress of 100 kPa and with initial static shear stress ratios of 0.0, 0.1, 

and 0.2. 
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Figure 4.5. Undrained cyclic DSS loading responses for DR = 35, 55, and 75% with a vertical 

effective consolidation stress of 100 kPa and without any initial static shear stress. 
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Figure 4.6. Cyclic stress ratios versus number of equivalent uniform loading cycles in undrained 

DSS loading to cause ru=98% or single-amplitude shear strains of 1% or 3% for DR = 

35, 55, and 75% with a vertical effective consolidation stress of 100 kPa. Each set of 

CSR-N simulations was fit with a power relationship and the exponent b is labeled 

beside each curve.  
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Figure 4.7. Cyclic stress ratios versus number of equivalent uniform loading cycles in undrained 

DSS loading to cause single-amplitude shear strain of 3% for DR = 35, 55, and 75% 

with vertical effective consolidation stresses of 1, 4, and 8 atm. 

  



 94  

 

 
 

Figure 4.8. Comparison of K factors, determined at 15 uniform loading cycles to cause 3% single-

amplitude shear strain, from simulations versus relationships recommended by 

Boulanger and Idriss (2004). 
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Figure 4.9. Cyclic stress ratios versus number of equivalent uniform loading cycles in undrained 

DSS loading to cause single-amplitude shear strain of 3% for DR = 35, 55, and 75% 

with vertical effective consolidation stresses of 100 kPa and initial static shear stress 

ratios of 0.0, 0.1, 0.2, and 0.3. 
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Figure 4.10. Effect of vertical effective consolidation stresses of 100 and 400 kPa on the variation 

of cyclic resistance ratio (a and b) (peak shear strain of 3% in 15 uniform cycles in 

DSS loading) and on the Kα factor (c and d) for sand at DR of 35, 55, and 75% with 

initial static shear stress ratios of 0.0, 0.1, 0.2, and 0.3. 
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Figure 4.11. Cyclic stress ratios versus number of equivalent uniform loading cycles in undrained 

DSS loading to cause single-amplitude shear strain of 3% for DR = 35, 55, and 75% with 

vertical effective consolidation stresses of 100 kPa and initial Ko values of 0.3, 0.5, 0.8, 

and 1.2. 
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Figure 4.12. Drained monotonic DSS loading responses for DR = 35, 55, and 75% with vertical effective confining stresses of ¼, 1, 4, 16, 

and 64 atm and Ko=0.5. 
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Figure 4.13. Drained monotonic PSC (plane strain compression) loading responses for DR = 35, 55, and 75% with initial isotropic 

confining stresses of ¼, 1, 4, 16, and 64 atm. 
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Figure 4.14. Peak friction angles from drained monotonic PSC and DSS loading responses for DR 

= 35, 55, and 75% under effective confining stresses of ¼, 1, 4, 16, and 64 atm. For 

DSS loading, the friction angle is presented using the conventional interpretations that 

the horizontal plane is the failure plane (the actual plane of peak stress ratio is not 

horizontal in these simulations). 
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Figure 4.15. Undrained monotonic DSS loading responses for DR = 35, 55, and 75% under vertical 

effective consolidation stresses of ¼, 1, 4, and 16 atm. 
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Figure 4.16. Normalized responses to undrained monotonic DSS loading for DR = 35, 55, and 75% 

under vertical effective consolidation stresses of ¼, 1, 4, and 16 atm. 
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Figure 4.17. Drained strain-controlled cyclic DSS loading responses for DR = 35% under vertical 

effective consolidation stresses of 1, 4, and 16 atm. 
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Figure 4.18. Drained strain-controlled cyclic DSS loading responses for DR = 55% under vertical 

effective consolidation stresses of 1, 4, and 16 atm. 
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Figure 4.19. Drained strain-controlled cyclic DSS loading responses for DR = 75% under vertical 

effective consolidation stresses of 1, 4, and 16 atm. 
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Figure 4.20. Volumetric strains during drained strain-controlled cyclic DSS loading for DR = 35, 55, and 75% with a vertical effective 

consolidation stress of 100 kPa. 

 

.
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Figure 4.21. Volumetric strain due to post-cyclic reconsolidation versus the maximum shear strain 

induced during undrained cyclic DSS loading. 
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Figure 4.22.  Calibrating PM4Sand to a specified undrained critical state shear strength by adjusting R 

(Boulanger and Ziotopoulou 2018) 

 

 

 

 

Figure 4.23. Monotonic undrained DSS responses for DR = 35% two calibrations: Calibration 1 with 

defaults for all secondary parameters, and Calibration 2 with R based on su,cs = 7 kPa.  
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Figure 4.24. Cyclic undrained DSS response for DR = 35% at CSR = 0.09 for (1) Calibration 1 with default 

values for all secondary parameters, and (2) Calibration 2 with R based on su,cs = 7 kPa. 
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5. CONCLUDING REMARKS 

 

The PM4Sand (Version 3.3) plasticity model presented herein is built upon the basic 

framework of the stress ratio-controlled, critical state-based, bounding surface plasticity model for 

sand presented by Dafalias and Manzari (2004). A series of modifications and additions to the 

model were incorporated by Boulanger (2010; Version 1), Boulanger and Ziotopoulou (2012 

Version 2; 2015 Version 3; 2017 Version 3.1, 2023 Version 3.2) and further herein (Version 3.3) 

to improve its ability to approximate the stress-strain responses important to geotechnical 

earthquake engineering practice; in essence, the model was calibrated at the equation level to 

provide for better approximation of the trends observed in empirical correlations commonly used 

in practice. These constitutive modifications included:  

• revising the fabric formation/destruction to depend on plastic shear rather than plastic 

volumetric strains;  

• adding fabric history and cumulative fabric formation terms;  

• modifying the plastic modulus relationship and making it dependent on fabric;  

• modifying the dilatancy relationships to include dependence on fabric and fabric history, 

and provide more distinct control of volumetric contraction versus expansion behavior;  

• providing a constraint on the dilatancy during volumetric expansion so that it is consistent 

with Bolton’s (1986) dilatancy relationship;  

• modifying the elastic modulus relationship to include dependence on stress ratio and fabric 

history; 

• modifying the logic for tracking the initial back-stress ratio history;  

• recasting the critical state framework to be in terms of a relative state parameter index;  

• simplifying the formulation by restraining it to plane strain without Lode angle dependency 

for the bounding and dilatancy surfaces;  

• incorporating a methodology for improved modeling of post-liquefaction reconsolidation 

strains; and 

• providing default values for all but three primary input parameters. 

The model (Version 3.3) was implemented as a user defined material in DLLs for use with the 

commercial programs FLAC 8.1 (Itasca 2019) and FLAC2D 9.00 (Itasca 2023).  

The three primary model input properties are: an apparent DR which affects the peak drained 

and undrained strengths and the rate of strain accumulation during cyclic loading; the shear 

modulus coefficient, Go, which should be calibrated to the estimated or measured in-situ shear 

wave velocity; and the contraction rate parameter, hpo which is used to calibrate to the estimated 

in-situ cyclic resistance ratio after all other properties have been set. 

The behavior of the model was illustrated by simulations of element loading tests covering a 

broad range of conditions, including drained and undrained, cyclic and monotonic loading under a 

range of initial relative densities, confining stresses, and initial shear stress conditions. The current 

formulation is limited to plane strain applications. Simulations presented in this report were 

completed using the dynamic link library (DLL) version modelpm4sand005_64.dll compiled on 

June 12, 2023 compatible with FLAC 8.1. The use of the DLL module cmodelPM4Sand2D009.dll 

compiled on June 12, 2023 in FLAC2D 9.00 showed that the results remain unaffected. The model 
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was shown to provide reasonable approximations of desired behaviors and to be relatively easy to 

calibrate.  
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