Memorandum

Date: June 29, 2023

To: PFC 7 Documentation Set

From: David Potyondy

Re: Material-Modeling Support for PFC [fistPkg7.3] (Example Materials 2)

Ref: ICG7766-L

TABLE OF CONTENTS

1.0	l	EXAMPLE MATERIALS	3
1.	.1	Parallel-Bonded Material Example	4
1.	.2	Parallel-Bonded Material Example (2D model)	6
1.	.3	Soft-Bonded Material Example	8
1.	.4	Soft-Bonded Material Example (2D model)	10
1.	.5	Flat-Jointed Material Example	12
1.	.6	Flat-Jointed Material Example (2D model)	14
1.	.7	Flat-Jointed Voronoi and Tetrahedral Grain Material Examples	16

1.0 EXAMPLE MATERIALS

The PFC FISHTank produces linear, contact-bonded, parallel-bonded, soft-bonded, flat-jointed and user-defined (3D hill) materials. Examples for each material are provided in the Example Materials memos. Each example serves as a base case and provides a material at the lowest resolution sufficient to demonstrate system behavior. There is a material-genesis project for each material, and these projects are in the <code>fistPkg7.N/ExampleProjects/MatGen-M</code> directory, where N is the version number of the PFC FISHTank, and M is the material type. There are separate 2D and 3D projects for each material, and both projects are contained within the same example-project directory. Examples for the parallel-bonded, soft-bonded and flat-jointed materials are provided in the following subsections.¹

¹ The microstructural arrangement and stress-strain curves obtained with the current FISHTank may vary slightly from those shown here, which may have been generated by an earlier version of the FISHTank.

1.1 Parallel-Bonded Material Example

The parallel-bonded material example is in the **MatGen-ParallelBonded** example-project directory. A parallel-bonded material is created to represent a typical sandstone, which we take to be Castlegate sandstone.² We denote our sandstone material as the SS_ParallelBonded material with microproperties listed in Table 1. The material is created in a cubic material vessel (of 50 mm side length, with a 3 GPa effective modulus).³ The grain-scaling packing procedure is used to pack the grains to a 30 MPa material pressure, and then parallel bonds are added between all grains that are in contact with one another (see Figure 1). The material is then subjected to compression, diametral-compression and direct-tension tests. The test results can be displayed and interpreted in the same way as for the contact-bonded material example in the Example Materials 1 memo.

Table 1 Microproperties of SS ParallelBonded Material*

Property	Value	
Common group:		
$N_{\scriptscriptstyle m}$	SS_ParallelBonded	
$T_m, \ \alpha, \ C_{\rho}, \ \rho_{\nu} \left[\text{kg/m}^3 \right]$	2, 0.7, 1, 1960	
$S_{g}, \; T_{SD}, \; \left\{D_{\left\{l,u ight\}}\left[mm ight], \; \phi ight\}, \; D_{mult}$	0, 0, {4.0,6.0,1.0}, 1.0	
Packing group:		
$S_{_{RN}},\;P_{_{m}}ig[ext{MPa}ig],\;arepsilon_{_{P}},\;arepsilon_{_{ ext{lim}}},\;n_{_{ ext{lim}}}$	10000, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}	
C_p, n_c	1, 0.30	
Parallel-bonded material group:		
Linear group:		
E^* [GPa], κ^* , μ	1.5, 1.5, 0.4	
Parallel-bond group:	'	
$g_{_{i}}$ [mm], $ar{\lambda}$, $ar{E}^{*}$ [GPa], $ar{\kappa}^{*}$, $ar{eta}$	0, 1.0, 1.5, 1.5, 1.0	
$(\bar{\sigma}_c)_{\{m, sd\}}$ [MPa], $(\bar{c})_{\{m, sd\}}$ [MPa], $\bar{\gamma}$, $\bar{\phi}$ [degrees]	{1.0,0}, NA, 20, 0	
Linear material group:	,	
E_n^* [GPa], κ_n^* , μ_n	1.5, 1.5, 0.4	

^{*} Parallel-bonded material parameters are defined in Table 4 of the base memo.

² Typical properties of Castlegate sandstone are listed in footnote 4 of the Example Materials 1 memo.

³ A parallel-bonded clumped material can be created in the same way as for the contact-bonded material example.

Figure 1 SS_ParallelBonded material at the end of material genesis with grains and intact parallel bonds in the microstructural box.

1.2 Parallel-Bonded Material Example (2D model)

The parallel-bonded material example for the 2D model is in the MatGen-ParallelBonded example-project directory. The files for the 2D model contain the p2* extension (e.g., MatGen.p2prj and mpParams.p2dat). A 2D parallel-bonded material (consisting of rigid unit-thickness disks) is created to represent a typical sandstone, which we take to be Castlegate sandstone. We denote our sandstone material as the SS_ParallelBonded2D material with microproperties listed in Table 2. The material is created in a square-cuboid material vessel (of 50 mm side length and unit depth, with a 3 GPa effective modulus). The grain-scaling packing procedure is used to pack the grains to a 30 MPa material pressure, and then parallel bonds are added between all grains that are in contact with one another (see Figure 2). The material is then subjected to compression, diametral-compression and direct-tension tests. The test results can be displayed and interpreted in the same way as for the contact-bonded material example in the Example Materials 1 memo.

Table 2 Microproperties of SS ParallelBonded2D Material*

Property	Value	
Common group:		
$N_{\scriptscriptstyle m}$	SS_ParallelBonded2D	
$T_{m}, \alpha, C_{\rho}, \rho_{v} \left[\text{kg/m}^{3} \right]$	2, 0.7, 1, 1960	
S_{g} , T_{SD} , $\left\{D_{\left\{l,u ight\}}\left[mm\right],\;\phi ight\}$, D_{mult}	0, 0, {1.6, 2.4, 1.0}, 1.0	
Packing group:		
$S_{\!\scriptscriptstyle RN},\; P_{\!\scriptscriptstyle m} ig[ext{MPa} ig],\; arepsilon_{\!\scriptscriptstyle P},\; arepsilon_{\!\scriptscriptstyle ext{lim}},\; n_{\!\scriptscriptstyle ext{lim}}$	10000, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}	
C_p, n_c	1, 0.08	
Parallel-bonded material group:		
Linear group:		
$E^*[GPa], \kappa^*, \mu$	1.5, 1.5, 0.4	
Parallel-bond group:	'	
$g_{_{i}}$ [mm], $ar{\lambda}$, $ar{E}^{*}$ [GPa], $ar{\kappa}^{*}$, $ar{eta}$	0, 1.0, 1.5, 1.5, 1.0	
$(\bar{\sigma}_c)_{\{m, sd\}}$ [MPa], $(\bar{c})_{\{m, sd\}}$ [MPa], $\bar{\phi}$ [degrees]	$\{1.0,0\},\ \{20.0,0\},\ 0$	
Linear material group:		
E_n^* [GPa], κ_n^* , μ_n	1.5, 1.5, 0.4	

^{*} Parallel-bonded material parameters are defined in Table 4 of the base memo.

⁴ Typical properties of Castlegate sandstone are listed in footnote 4 of the Example Materials 1 memo.

⁵ A ²D parallel-bonded clumped material can be created in the same way as for the ²D contact-bonded material example.

Figure 2 SS_ParallelBonded2D material at the end of material genesis with grains and intact parallel bonds in the microstructural box.

1.3 Soft-Bonded Material Example

The soft-bonded material example is in the **MatGen-SoftBonded** example-project directory. A soft-bonded material is created to represent a typical sandstone, which we take to be Castlegate sandstone. We denote our sandstone material as the SS_SoftBonded material with microproperties listed in Figure 3. The material is created in a cubic material vessel (of 50 mm side length, with a 3 GPa effective modulus). The grain-scaling packing procedure is used to pack the grains to a 30 MPa material pressure, and then soft bonds are added between all grains that are in contact with one another (see Figure 1). The material is then subjected to compression, diametral-compression and direct-tension tests. The test results can be displayed and interpreted in the same way as for the contact-bonded material example in the Example Materials 1 memo.

Table 3 Microproperties of SS SoftBonded Material*

Property	Value	
Common group:		
$N_{\scriptscriptstyle m}$	SS_SoftBonded	
$T_{m}, \alpha, C_{\rho}, \rho_{v} \left[\text{kg/m}^{3} \right]$	3, 0.7, 1, 1960	
S_g , T_{SD} , $\left\{D_{\left\{l,u\right\}}\left[mm\right],\;\phi\right\}$, D_{mult}	0, 0, {4.0,6.0,1.0}, 1.0	
Packing group:		
$S_{\scriptscriptstyle RN},\; P_{\scriptscriptstyle m}$ [MPa], $arepsilon_{\scriptscriptstyle P},\; arepsilon_{\scriptscriptstyle ext{lim}},\; n_{\scriptscriptstyle ext{lim}}$	10000, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}	
C_p, n_c	1, 0.30	
Soft-bonded material group:		
g_i [mm], λ , E^* [GPa], κ^* , β	0, 1.0, 1.5, 1.5, 1.0	
$(\sigma_c)_{\text{m, sd}}$ [MPa], $(c)_{\text{m, sd}}$ [MPa], γ , ϕ [degrees]	$\{1.0,0\}$, NA, 20, 0.0	
$\zeta, \gamma, \mu \lambda_b \lambda_i$	0.0, 0.0, 0.4, 0.0, 0.0	
Linear material group:		
E_n^* [GPa], κ_n^* , μ_n	1.5, 1.5, 0.4	

^{*} Soft-bonded material parameters are defined in Table 5 of the base memo.

⁶ Typical properties of Castlegate sandstone are listed in footnote 4 of the Example Materials 1 memo.

⁷ A soft-bonded clumped material can be created in the same way as for the contact-bonded material example.

Figure 3 SS_SoftBonded material at the end of material genesis with grains and intact soft bonds in the microstructural box.

1.4 Soft-Bonded Material Example (2D model)

The soft-bonded material example for the 2D model is in the MatGen-SoftBonded example-project directory. The files for the 2D model contain the p2* extension (e.g., MatGen.p2prj and mpParams.p2dat). A 2D soft-bonded material (consisting of rigid unit-thickness disks) is created to represent a typical sandstone, which we take to be Castlegate sandstone. We denote our sandstone material as the SS_SoftBonded2D material with microproperties listed in Table 4. The material is created in a square-cuboid material vessel (of 50 mm side length and unit depth, with a 3 GPa effective modulus). The grain-scaling packing procedure is used to pack the grains to a 30 MPa material pressure, and then soft bonds are added between all grains that are in contact with one another (see Figure 2). The material is then subjected to compression, diametral-compression and direct-tension tests. The test results can be displayed and interpreted in the same way as for the contact-bonded material example in the Example Materials 1 memo.

Table 4 Microproperties of SS SoftBonded2D Material*

Property	Value
Common group:	
$N_{\scriptscriptstyle m}$	SS_SoftBonded2D
T_m , α , C_ρ , $\rho_v \left[\text{kg/m}^3 \right]$	3, 0.7, 1, 1960
S_g , T_{SD} , $\left\{D_{\{l,u\}}\left[mm\right], \; \phi\right\}$, D_{mult}	0, 0, {4.0,6.0,1.0}, 1.0
Packing group:	•
$S_{\!\scriptscriptstyle R\!\scriptscriptstyle N},\; P_{\!\scriptscriptstyle m} ig[ext{MPa} ig],\; arepsilon_{\!\scriptscriptstyle P},\; arepsilon_{\!\scriptscriptstyle ext{lim}},\; n_{\!\scriptscriptstyle ext{lim}}$	10000, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}
C_p, n_c	1, 0.08
Soft-bonded material group:	
g_i [mm], λ , E^* [GPa], κ^* , β	0, 1.0, 1.5, 1.5, 1.0
$(\sigma_c)_{\{m, sd\}}$ [MPa], $(c)_{\{m, sd\}}$ [MPa], γ , ϕ [degrees]	$\{1.0,0\}$, NA, 20, 0.0
$\zeta, \gamma, \mu \lambda_b \lambda_i$	0.0, 0.0, 0.4, 0.0, 0.0
Linear material group:	
E_n^* [GPa], κ_n^* , μ_n	1.5, 1.5, 0.4

^{*} Soft-bonded material parameters are defined in Table 5 of the base memo.

⁸ Typical properties of Castlegate sandstone are listed in footnote 4 of the Example Materials 1 memo.

⁹ A 2D soft-bonded clumped material can be created in the same way as for the 2D contact-bonded material example.

Figure 4 SS_SoftBonded2D material at the end of material genesis with grains and intact soft bonds in the microstructural box.

1.5 Flat-Jointed Material Example

The flat-jointed material example is in the **MatGen-FlatJointed** example-project directory. A flat-jointed material is created to represent a typical sandstone, which we take to be Castlegate sandstone. We denote our sandstone material as the SS_FlatJointed material with microproperties listed in Table 5. The material is created in a cubic material vessel (of 50 mm side length, with a 3 GPa effective modulus). The grain-scaling packing procedure is used to pack the grains to a 30 MPa material pressure, and then the flat-joint contact model is installed between all grains that are in contact with one another and the flat-jointed material properties are assigned to those flat-jointed contacts (see Figure 5). The material is then subjected to compression, diametral-compression and direct-tension tests. The test results can be displayed and interpreted in the same way as for the contact-bonded material example in the Example Materials 1 memo.

Table 5 Microproperties of SS FlatJointed Material*

Property	Value	
Common group:		
$N_{\scriptscriptstyle m}$	SS_FlatJointed	
T_m , C_r , ε_s , ε_a , α , C_ρ , $\rho_v \left[\text{kg/m}^3 \right]$	4, NA, NA, NA, 0.7, 1, 1960	
$S_{g}, T_{SD}, \left\{D_{\left\{l,u\right\}}\left[mm\right], \phi\right\}, D_{mult}$	0, 0, {4.0,6.0,1.0}, 1.0	
Packing group:		
$S_{\scriptscriptstyle RN}$, $P_{\scriptscriptstyle m}$ [MPa], $arepsilon_{\scriptscriptstyle P}$, $arepsilon_{\scriptscriptstyle m lim}$, $n_{\scriptscriptstyle m lim}$	10000, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}	
C_p, n_c	1, 0.30	
Flat-jointed material group:		
$C_{MS}, \ g_i \ [ext{mm}], \ \phi_B, \ \phi_G, \ \left(g_o ight)_{ ext{m,sd}} \ [ext{mm}], \ \left\{N_r, N_lpha ight\}$	false, 0, 1, 0, $\{0,0\}$, $\{1,3\}$	
$\{C_{\lambda},\ \lambda_{\nu}\},\ E^{*}$ [GPa], $\kappa^{*},\ \mu$	$\{0, 1.0\}, 3.0, 1.5, 0.4$	
$\left(\sigma_{c}\right)_{\text{\{m, sd\}}} \left[\text{MPa}\right], \left(c\right)_{\text{\{m, sd\}}} \left[\text{MPa}\right], \ \gamma, \ c_{r}, \ M_{r}, \ \phi \left[\text{degrees}\right]$	{1.0,0}, NA, 20, 0.0, 0, 0	
Linear material group:		
E_n^* [GPa], κ_n^* , μ_n	1.5, 1.5, 0.4	

^{*} Flat-jointed material parameters are defined in Table 5 of the base memo.

¹⁰ Typical properties of Castlegate sandstone are listed in footnote 4 of the Example Materials 1 memo.

¹¹ A flat-jointed clumped material can be created in the same way as for the contact-bonded material example.

Figure 5 SS_FlatJointed material at the end of material genesis with grains and flat-jointed interfaces in the microstructural box.

1.6 Flat-Jointed Material Example (2D model)

The flat-jointed material example for the 2D model is in the MatGen-FlatJointed example-project directory. The files for the 2D model contain the p2* extension (e.g., MatGen.p2prj and mpParams.p2dat). A 2D flat-jointed material (consisting of rigid unit-thickness disks) is created to represent a typical sandstone, which we take to be Castlegate sandstone. We denote our sandstone material as the SS_FlatJointed2D material with microproperties listed in Table 6. The material is created in a square-cuboid material vessel (of 50 mm side length and unit depth, with a 3 GPa effective modulus). The grain-scaling packing procedure is used to pack the grains to a 30 MPa material pressure, and then the flat-joint contact model is installed between all grains that are in contact with one another and the flat-jointed material properties are assigned to those flat-jointed contacts (see Figure 6). The material is then subjected to compression, diametral-compression and direct-tension tests. The test results can be displayed and interpreted in the same way as for the contact-bonded material example in the Example Materials 1 memo.

Table 6 Microproperties of SS FlatJointed2D Material*

Property	Value	
Common group:		
N_{m}	SS_FlatJointed2D	
T_m , α , C_ρ , $\rho_v \left[\text{kg/m}^3 \right]$	4, 0.7, 1, 1960	
$S_{g}, T_{SD}, \left\{D_{\left\{l,u\right\}}\left[mm\right], \phi\right\}, D_{mult}$	0, 0, {1.6,2.4,1.0}, 1.0	
Packing group:		
$S_{\scriptscriptstyle RN},\; P_{\scriptscriptstyle m}$ [MPa], $\;arepsilon_{\scriptscriptstyle P},\; arepsilon_{\scriptscriptstyle m lim},\; n_{ m lim}$	10000, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}	
C_p, n_c	1, 0.08	
Flat-jointed material group:	·	
$C_{M\!S},~g_i\left[\mathrm{mm} ight],~\phi_{\!\scriptscriptstyle B},~\phi_{\!\scriptscriptstyle G},~\left(g_o ight)_{\!\left\{\mathrm{m,sd} ight\}}\left[\mathrm{mm} ight],~N_r$	false, 0, 1, 0, $\{0,0\}$, 2	
$\{C_{\lambda}, \lambda_{\nu}\}, E^{*}[GPa], \kappa^{*}, \mu$	$\{0, 1.0\}, 3.0, 1.5, 0.4$	
$\left(\sigma_{c}\right)_{\text{\{m, sd\}}}\left[\text{MPa}\right], \left(c\right)_{\text{\{m, sd\}}}\left[\text{MPa}\right], \ \gamma, \ c_{r}, \ M_{r}, \ \phi\left[\text{degrees}\right]$	$\{1.0,0\}$, NA, 20, 0.0, 0, 0	
Linear material group:		
E_n^* [GPa], κ_n^* , μ_n	1.5, 1.5, 0.4	

^{*} Flat-jointed material parameters are defined in Table 5 of the base memo.

¹² Typical properties of Castlegate sandstone are listed in footnote 4 of the Example Materials 1 memo.

¹³ A 2D flat-jointed clumped material can be created in the same way as for the 2D contact-bonded material example.

Figure 6 SS_FlatJointed2D material at the end of material genesis with grains and flat-jointed interfaces in the microstructural box.

1.7 Flat-Jointed Voronoi and Tetrahedral Grain Material Examples

The flat-jointed Voronoi- and tetrahedral-grain material examples are in the MatGen-FJ3DVoronoi and MatGen-FJ3DTet example-project directories, respectively. These materials represent Lac du Bonnet granite and are denoted as LdB_FJvorC and LdB_FJtetC, respectively. Their microproperties are listed in Tables 7 and 8. The material-creation procedure and behavior during compression and tension tests are described in Potyondy et al. (2020), and the materials (including a spherical-grain material) are shown in Figure 7. The microproperties are listed here to show the relevant parameters.

Table 7 Microproperties of LdB FJvorC Material (Voronoi grains)*

Property	Value	
Common group:		
$N_{\scriptscriptstyle m}$	LdB_FJvorC	
T_m , C_r , ε_s , ε_a , α , C_ρ , $\rho_v \left[\text{kg/m}^3 \right]$	4, 1, 0.01, 6, 0.7, 1, 2630	
$S_{g},~T_{SD},~\left\{D_{\left\{l,u ight\}}\left[mm ight],~\phi ight\},~D_{mult},~f_{s}$	0, 0, {1.5,225,1.0}, 1.0, NA	
Packing group:		
$S_{_{RN}},\;P_{_{m}}\left[ext{MPa} ight],\;arepsilon_{_{P}},\;arepsilon_{_{ ext{lim}}},\;n_{_{ ext{lim}}}$	10001, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}	
C_p, n_c	1, 0.30	
Flat-jointed material group:		
$C_{MS}, \; g_i \left[\mathrm{mm} \right], \; \phi_B, \; \phi_G, \; \left(g_o ight)_{\left\{ \mathrm{m,sd} \right\}} \left[\mathrm{m} \right], \; \left\{ N_r, N_lpha ight\}$	NA, NA, 1, 0, $\{0,0\}$, $\{1,3\}$	
$\{C_{\lambda}, \lambda_{\nu}\}, E^{*}[\mathbf{CPa}], \kappa^{*}, \mu$	NA, 60, 1.5, 0.6	
$\left(\sigma_{c}\right)_{\text{\{m, sd\}}}\left[\text{MPa}\right], \left(c\right)_{\text{\{m, sd\}}}\left[\text{MPa}\right], \ \gamma, \ c_{r}, \ M_{r}, \ \phi\left[\text{degrees}\right]$	{9.4,1.13}, {73,8.76}, 0, 0, 0, 53	
Linear material group:	`	
E_n^* [GPa], κ_n^* , μ_n	60, 1.5, 0.6	

^{*} Flat-jointed material parameters are defined in Table 5 of the base memo.

Property	Value
Common group:	
$N_{\scriptscriptstyle m}$	LdB_FJtetC
T_m , C_r , ε_s , ε_a , α , C_ρ , $\rho_v \left[\text{kg/m}^3 \right]$	4, 2, 0.01, 6, 0.7, 1, 2630
$S_g, \; T_{SD}, \; \left\{D_{\left\{l,u ight\}}\left[mm ight], \; \phi ight\}, \; D_{mult}, \; f_s$	0, 0, {1.5,225,1.0}, 1.0, NA
Packing group:	
$S_{_{RN}},\;P_{_{m}}ig[ext{MPa}ig],\;arepsilon_{_{P}},\;arepsilon_{_{ ext{lim}}},\;n_{_{ ext{lim}}}$	10001, 30, 1×10^{-2} , 8×10^{-3} , 2×10^{6}
C_p, n_c	1, 0.30
Flat-jointed material group:	
$C_{MS}, g_i [\mathrm{mm}], \phi_B, \phi_G, (g_o)_{\mathrm{\{m,sd\}}} [\mathrm{m}], \{N_r, N_\alpha\}$	NA, NA, 1, 0, $\{0,0\}$, $\{1,3\}$
$\{C_{\lambda}, \lambda_{\nu}\}, E^{*}[\Omega Pa], \kappa^{*}, \mu$	NA, 80, 1.5, 0.2
$\left(\sigma_{c}\right)_{\!\!\left\{\mathrm{m,sd}\right\}}\!\left[\mathrm{MPa}\right],\left(c\right)_{\!\!\left\{\mathrm{m,sd}\right\}}\!\left[\mathrm{MPa}\right],\gamma,c_{r},M_{r},\phi\!\left[\mathrm{degrees}\right]$	{12,1.4}, {240,28.8}, 0, 0, 0, 0
Linear material group:	
\emph{E}^*_n [GPa], κ_n^* , μ_n	180, 1.5, 0.2

Table 8 Microproperties of LdB_FJtetC Material (tetrahedral grains)*

^{*} Flat-jointed material parameters are defined in Table 5 of the base memo.

Figure 7 The three flat-jointed materials with spherical, Voronoi and tetrahedral grains at specimen resolutions of 10. (From Fig. 9 of Potyondy et al. [2020])